Syrinxes are fluid-filled cavities of the spinal cord that characterize syringomyelia, a disease involving neurological damage. Their formation and expansion is poorly understood, which has hindered successful treatment. Syrinx cavities are hydraulically connected with the spinal subarachnoid space (SSS) enveloping the spinal cord via the cord interstitium and the network of perivascular spaces (PVSs), which surround blood vessels penetrating the pial membrane that is adherent to the cord surface. Since the spinal canal supports pressure wave propagation, it has been hypothesized that wave-induced fluid exchange across the pial membrane may play a role in syrinx filling. To investigate this conjecture a pair of one-dimensional (1-d) analytical models were developed from classical elastic tube theory coupled with Darcy’s law for either perivascular or interstitial flow. The results show that transpial flux serves as a mechanism for damping pressure waves by alleviating hoop stress in the pial membrane. The timescale ratio over which viscous and inertial forces compete was explicitly determined, which predicts that dilated PVS, SSS flow obstructions, and a stiffer and thicker pial membrane—all associated with syringomyelia—will increase transpial flux and retard wave travel. It was also revealed that the propagation of a pressure wave is aided by a less-permeable pial membrane and, in contrast, by a more-permeable spinal cord. This is the first modeling of the spinal canal to include both pressure-wave propagation along the spinal axis and a pathway for fluid to enter and leave the cord, which provides an analytical foundation from which to approach the full poroelastic problem.

References

References
1.
Klekamp
,
J.
and
Samii
,
M.
, 2001,
Syringomyelia: Diagnosis and Treatment
,
Springer
,
Berlin
.
2.
Levine
,
D. N.
, 2004, “
The Pathogenesis of Syringomyelia Associated With Lesions at the Foramen Magnum: A Critical Review of Existing Theories and Proposal of a New Hypothesis
,”
J. Neurol. Sci.
,
220
(
1–2
), pp.
3
21
.
3.
Batzdorf
,
U.
,
Klekamp
,
J.
, and
Johnson
,
J. P.
, 1998, “
A Critical Appraisal of Syrinx Cavity Shunting Procedures
,”
J. Neurosurg.
,
89
(
3
), pp.
382
388
.
4.
Brewis
,
M.
,
Poskanzer
,
D. C.
,
Rolland
,
C.
, and
Miller
,
H.
, 1966, “
Neurological Disease in an English City
,”
Acta Neurol. Scand.
,
42
(Suppl. 24), pp.
1
89
.
5.
Speer
,
M. C.
,
Enterline
,
D. S.
,
Mehltretter
,
L.
,
Hammock
,
P.
,
Joseph
,
J.
,
Dickerson
,
M.
,
Ellenbogen
,
R. G.
,
Milhorat
,
T. H.
,
Hauser
,
M. A.
, and
George
,
T. M.
, 2003, “
Chiari Type I Malformation With or Without Syringomyelia: Prevalence and Genetics
,”
J. Genet. Couns.
,
12
(
4
), pp.
297
311
.
6.
Klekamp
,
J.
, 2002, “
The Pathophysiology of Syringomyelia—Historical Overview and Current Concept
,”
Acta. Neurochir. (Wien)
,
144
, pp.
649
664
.
7.
Williams
,
B.
, 1976, “
Cerebrospinal Fluid Pressure Changes in Response to Coughing
,”
Brain
,
99
, pp.
331
346
.
8.
Yoshizawa
,
H.
, 2002, “
Presidential Address: Pathomechanism of Myelopathy and Radiculopathy from the Viewpoint of Blood Flow and Cerebrospinal Fluid Flow Including a Short Historical Review
,”
Spine
,
27
(
12
), pp.
1255
1263
.
9.
Brodbelt
,
A. R.
and
Stoodley
,
M. A.
, 2007, “
CSF Pathways: A Review
,”
Br. J. Neurosurg.
,
21
(
5
), pp.
510
520
.
10.
Brodbelt
,
A. R.
, 2003, “
Investigations in Post-traumatic Syringomyelia
,” PhD thesis, Prince of Wales Medical Research Institute, University of New South Wales, Sydney, Australia.
11.
Kiernan
,
J. A.
, 1998,
Barr’s the Human Nervous System, an Anatomical Viewpoint
,
7th ed.
,
Lippincott- Raven
,
Philadelphia
.
12.
Bloomfield
,
I. G.
,
Johnson
,
I. H.
, and
Bilston
,
L. E.
, 1998, “
Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid
,”
Pediatr. Neurosurg.
,
28
(
5
), pp.
246
251
.
13.
Williams
,
B.
, 1980, “
On the Pathogenesis of Syringomyelia: A Review
,”
J. R. Soc. Med.
,
73
(
11
), pp.
798
806
.
14.
Williams
,
B.
, 1986, “
Progress in Syringomyelia
,”
Neurol. Res.
,
8
, pp.
129
144
.
15.
Oldfield
,
E. H.
,
Murasko
,
K.
,
Shawker
,
T. H.
, and Patronas, N. H., 1994, “
Pathophysiology of Syringomyelia Associated With Chiari I Malformation of the Cerebellar Tonsils. Implications for Diagnosis and Treatment
,”
J. Neurosurg.
,
80
, pp.
3
15
.
16.
Fischbein
,
N. J.
,
Dillon
,
W. P.
,
Cobbs
,
C.
, and
Weinstein
,
P. R.
, 1999, “
The ‘Presyrinx’ State: A Reversible Myelopathic Condition That May Precede Syringomyelia
,”
Am. J. Neuroradiol.
,
20
, pp.
7
20
.
17.
Brodbelt
,
A. R.
,
Stoodley
,
M. A.
,
Watling
,
A. M.
,
Tu
,
J.
,
Burke
,
S.
, and
Jones
,
N. R.
, 2003, “
Altered subarachnoid space compliance and fluid flow in an animal model of posttraumatic syringomyelia
”.
Spine
,
28
(
20
), pp.
E413
E419
.
18.
Carpenter
,
P.
,
Berkouk
,
K.
, and
Lucey
,
A.
, 2003, “
Pressure Wave Propagation in Fluid-Filled Co-Axial Elastic Tubes—Part 2: Mechanisms for the Pathogenesis of Syringomyelia
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
857
863
.
19.
Martin
,
B. A.
,
Kalata
,
W.
,
Loth
,
F.
, and
Royston
,
T. J.
, 2005, “
Syringomyelia Hydrodynamics: An in vitro Study Based on in vivo Measurements
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1110
1120
.
20.
Bertram
,
C. D.
, 2010, “
Evaluation by Fluid/Structure-Interaction Spinal-Cord Simulation of the Effects of Subarachnoid-Space Stenosis on an Adjacent Syrinx
,”
ASME. J. Biomech. Eng.
,
132
(
6
), p.
061009
.
21.
Lockey
,
P.
,
Poots
,
G.
, and
Williams
,
B.
, 1975, “
Theoretical Aspects of the Attenuation of Pressure Pulses Within Cerebrospinal Fluid Pathways
,”
Med. Biol. Eng. Comput.
,
13
, pp.
861
869
.
22.
Berkouk
,
K.
,
Carpenter
,
P. W.
, and
Lucey
,
A. D.
, 2003, “
Pressure Wave Propagation in Fluid-Filled Co-Axial Elastic Tubes—Part 1: Basic Theory
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
852
856
.
23.
Bertram
,
C. D.
,
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
, 2005, “
The Origins of Syringomyelia: Numerical Models of Fluid/Structure Interactions in the Spinal Cord
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1099
1109
.
24.
Bertram
,
C. D.
,
Bilston
,
L. E.
, and
Stoodley
,
M. A.
, 2008, “
Tensile Radial Stress in the Spinal Cord Related to Arachnoiditis or Tethering: A Numerical Model
,”
Med. Biol. Eng. Comput.
,
46
, pp.
701
707
.
25.
Cirovic
,
S.
, 2009, “
A Coaxial Tube Model of the Cerebrospinal Fluid Pulse Propagation in the Spinal Column
,”
ASME J. Biomech. Eng.
,
131
(
2
), p.
021008
.
26.
Martin
,
B. A.
and
Loth
,
F.
, 2009. “
The Influence of Coughing on Cerebrospinal Fluid Pressure in an in vitro Syringomyelia Model With Spinal Subarachnoid Space Stenosis
,”
Cerebrospinal Fluid Res.
,
6
(
1
), p.
17
.
27.
Bertram
,
C. D.
, 2009, “
A Numerical Investigation of Waves Propagating in the Spinal Cord and Subarachnoid Space in the Presence of a Syrinx
,”
J. Fluids. Struct.
,
25
, pp.
1189
1205
.
28.
Martin
,
B. A.
,
Labuda
,
R.
,
Royston
,
T. J.
,
Oshinski
,
J. N.
,
Iskandar
,
B.
, and
Loth
,
F.
, 2010, “
Spinal Subarachnoid Space Pressure Measurements in an in vitro Spinal Stenosis Model: Implications on Syringomyelia Theories
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111007
.
29.
Bilston
,
L. E.
,
Fletcher
,
D. F.
,
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
, 2003, “
Arterial Pulsation-Driven Cerebrospinal Fluid Flow in the Perivascular Space: A Computational Model
,”
Comput. Methods. Biomech. Biomed. Eng.
,
6
(
4
), pp.
235
241
.
30.
Bilston
,
L. E.
,
Stoodley
,
M. A.
, and
Fletcher
,
D. F.
, 2010, “
The Influence of the Relative Timing of Arterial and Subarachnoid Space Pulse Waves on Spinal Perivascular Cerebrospinal Fluid Flow as a Possible Factor in Syrinx Developments
,”
J. Neurosurg.
,
112
(
4
), pp.
808
813
.
31.
Elliott
,
N. S. J.
,
Lockerby
,
D. A.
, and
Brodbelt
,
A. R.
, 2011, “
A Lumped-Parameter Model of the Cerebrospinal System for Investigating Arterial-Driven Flow in Posttraumatic Syringomyelia
,”
Med. Eng. Phys.
,
33
, pp.
874
882
.
32.
Elliott
,
N. S. J.
,
Lockerby
,
D. A.
, and
Brodbelt
,
A. R.
, 2009, “
The Pathogenesis of Syringomyelia: A Re-Evaluation of the Elastic-Jump Hypothesis
,”
ASME J. Biomech. Eng.
,
131
(
4
), p.
044503
.
33.
Polyanin
,
A. D.
, 2002,
Handbook of Linear Partial Differential Equations for Engineers and Scientists
.
Chapman and Hall
,
London
.
34.
Zauderer
,
E.
, 2006,
Partial Differential Equations of Applied Mathematics
, Pure and Applied Mathematics,
third ed.
,
Wiley
,
New York
.
35.
Shampine
,
L. F.
, 2008, “
Vectorized Adaptive Quadrature in MATLAB
,”
J. Comput. Appl. Math.
,
211
(
2
), pp.
131
140
.
36.
Eaton
,
J. W.
,
Bateman
,
D.
, and
Hauberg
,
S.
, 2008, GNU Octave Manual: Version 3, Network Theory Limited, http://www.octave.orghttp://www.octave.org.
37.
Bickley
,
W. G.
, 1941, “
Formulae for numerical differentiation
,”
Math. Gaz.
,
25
(
263
), pp.
19
27
.
38.
Ozawa
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokuban
,
S.
, 2004, “
Mechanical Properties and Function of the Spinal Pia Mater
,”
J. Neurosurg.
,
1
, pp.
122
127
.
39.
Reina
,
M. A.
,
De León Casasola
,
O.
,
Villanueva
,
M. C.
,
López
,
A.
,
Macheés
,
F.
, and
Andrés
,
J. A.
, 2004, “
Ultrastructural Findings in Human Spinal Pia Mater in Relation to Subarachnoid Anesthesia
,”
Anesth. Analg. (Baltimore)
,
98
, pp.
1479
1485
.
40.
Cloyd
,
M. W.
and
Low
,
F. N.
, 1974, “
Scanning Electron Microscopy of the Subarachnoid Space in the Dog: I. Spinal Cord Levels
,”
J. Comp. Neurol.
,
153
(
4
), pp.
325
368
.
41.
Gray
,
H.
, 1918,
Anatomy of the Human Body
,
20th ed.
,
Lea & Febiger
,
Philadelphia
.
42.
Smillie
,
A.
,
Sobey
,
I.
, and
Molnar
,
Z.
, 2005, “
A Hydroelastic Model of Hydrocephalus
,”
J. Fluid. Mech.
,
539
, pp.
417
443
.
43.
Cirovic
,
S.
,
Walsh
,
C.
, and
Fraser
,
W. D.
, 2002, “
Wave Propagation in a System of Coaxial Tubes Flled With Incompressible Media: A Model of Pulse Transmission in the Intracranial Arteries
,”
J. Fluids. Struct.
,
16
(
8
), pp.
1029
1049
.
44.
Kalata
,
W.
,
Martin
,
B. A.
,
Oshinski
,
J. N.
,
Jerosch-Herold
,
M.
,
Royston
,
T. J.
, and
Loth
,
F.
, 2009, “
MR Measurement of Cerebrospinal Fluid Velocity Wave Speed in the Spinal Canal
,”
IEEE Trans. Biomed. Eng.
,
56
(
6
), pp.
1765
1768
.
45.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
, 2001, “
Hydrodynamic Model of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
ASME J. Biomech. Eng.
,
123
, pp.
71
79
.
46.
McDonald
,
D. A.
, 1974,
Blood Flow in Arteries
,
Edward Arnold
,
London
.
47.
Stockman
,
H. W.
, 2006, “
Effect of Anatomical Fine Structure on the Flow of Cerebrospinal Fluid in the Spinal Subarachnoid Space
,”
ASME J. Biomech. Eng.
,
128
, pp.
106
114
.
48.
Burridge
,
R.
and
Keller
,
J. B.
, 1981, “
Poroelasticity Equations Derived From Microstructure
,”
J. Acoust. Soc. Am.
,
70
(
4
), pp.
1140
1146
.
49.
Gillies
,
G. T.
,
Wilhelm
,
T. D.
,
Humphrey
,
J. A. C.
,
Fillmore
,
H. L.
,
Holloway
,
K. L.
, and
Broaddus
,
W. C.
, 2002, “
A Spinal Cord Surrogate With Nanoscale Porosity for in vitro Simulations of Restorative Neurosurgical Techniques
,”
Nanotechnology
,
13
, pp.
587
591
.
50.
Bilston
,
L. E.
and
Thibault
,
L. E.
, 1996, “
The Mechanical Properties of the Human Cervical Spinal Cord in vitro
,”
Ann. Biomed. Eng.
,
24
(
1
), pp.
67
74
.
51.
Ball
,
M. J.
and
Dayan
,
A. D.
, 1972, “
Pathogenesis of Syringomyelia
,”
Lancet
,
ii
, pp.
799
801
.
52.
Stoodley
,
M. A.
,
Gutschmidt
,
B.
, and
Jones
,
N. R.
, 1999, “
Cerebrospinal Fluid Flow in an Animal Model of Noncommunicating Syringomyelia
,”
Neurosurgery
,
44
(
5
), pp.
1065
1075
.
53.
Biot
,
M. A.
, 1956, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.
54.
Tenti
,
G.
,
Drake
,
J.
, and
Sivaloganathan
,
S.
, 2000, “
Brain Biomechanics: Mathematical Modelling of Hydrocephalus
,”
Neurol. Res.
,
22
, pp.
19
24
.
55.
Harris
,
P. J.
and
Hardwidge
,
C.
, 2010, “
A Porous Finite Element Model of the Motion of the Spinal Cord
,”
Integral Methods in Science and Engineering
, Volume
2
: Computational Methods, edited by
C.
Constanda
and
M. E.
Pérez
,
Springer
,
New York
, pp.
193
201
.
56.
Heiss
,
J. D.
,
Patronas
,
N.
,
DeVroom
,
H. L.
,
Shawker
,
T.
,
Ennis
,
R.
,
Kammerer
,
W.
,
Eidsath
,
A.
,
Talbot
,
T.
,
Morris
,
J.
,
Eskioglu
,
E.
, and
Oldfield
,
E. H.
, 1999, “
Elucidating the Pathophysiology of Syringomyelia
,”
J. Neurosurg.
,
91
, pp.
553
562
.
57.
Brodbelt
,
A. R.
and
Stoodley
,
M. A.
, 2003, “
Post-Traumatic Syringomyelia: A Review
,”
J. Clin. Neurosci.
,
10
(
4
), pp.
401
408
.
58.
Milhorat
,
T. H.
,
Capocelli
,
A. L.
,
Kotzen
,
R. M.
,
Bolognese
,
P.
,
Heger
,
I. M.
, and
Cottrell
,
J. E.
, 1997, “
Intramedullary Pressure in Syringomyelia: Clinical and Pathophysiological Correlates of Syrinx Distension
,”
Neurosurgery
,
41
(
5
), pp.
1102
1110
.
You do not currently have access to this content.