Revision surgeries of total hip arthroplasty are often caused by a deficient structural compatibility of the implant. Two main culprits, among others, are bone-implant interface instability and bone resorption. To address these issues, in this paper we propose a novel type of implant, which, in contrast to current hip replacement implants made of either a fully solid or a foam material, consists of a lattice microstructure with nonhomogeneous distribution of material properties. A methodology based on multiscale mechanics and design optimization is introduced to synthesize a graded cellular implant that can minimize concurrently bone resorption and implant interface failure. The procedure is applied to the design of a 2D left implanted femur with optimized gradients of relative density. To assess the manufacturability of the graded cellular microstructure, a proof-of-concept is fabricated by using rapid prototyping. The results from the analysis are used to compare the optimized cellular implant with a fully dense titanium implant and a homogeneous foam implant with a relative density of 50%. The bone resorption and the maximum value of interface stress of the cellular implant are found to be over 70% and 50% less than the titanium implant while being 53% and 65% less than the foam implant.

References

1.
Kurtz
,
S.
,
Ong
,
K.
,
Lau
,
E.
,
Mowat
,
F.
, and
Halpern
,
M.
, 2007, “
Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030
,”
J. Bone Jt. Surg., Am. Vol.
,
89
(
4
), pp.
780
785
.
2.
Vichinsky
,
E. P.
,
Neumayr
,
L. D.
,
Haberkern
,
C.
,
Earles
,
A. N.
,
Eckman
,
J.
,
Koshy
,
M.
, and
Black
,
D. M.
, 1999, “
The Perioperative Complication Rate of Orthopedic Surgery in Sickle Cell Disease: Report of the National Sickle Cell Surgery Study Group
,”
Am. J. Hematol.
,
62
(
3
), pp.
129
138
.
3.
Kobayashi
,
S.
,
Saito
,
N.
,
Horiuchi
,
H.
,
Iorio
,
R.
, and
Takaoka
,
K.
, 2000, “
Poor Bone Quality or Hip Structure as Risk Factors Affecting Survival of Total-Hip Arthroplasty
,”
The Lancet
,
355
(9214), pp.
1499
1504
.
4.
Kowalczyk
,
P.
, 2001, “
Design Optimization of Cementless Femoral Hip Prostheses Using Finite Element Analysis
,”
J. Biomech. Eng.
,
123
(
5
), pp.
396
402
.
5.
Moen
,
T. C.
,
Ghate
,
R.
,
Salaz
,
N.
,
Ghodasra
,
J.
, and
Stulberg
,
S. D.
, 2011, “
A Monoblock Porous Tantalum Acetabular Cup Has No Osteolysis on Ct at 10 Years
,”
Clin. Orthop. Relat. Res.
,
469
(
2
), pp.
382
386
.
6.
Kurtz
,
S.
,
Gawel
,
H.
, and
Patel
,
J.
, 2011, “
History and Systematic Review of Wear and Osteolysis Outcomes for First-Generation Highly Crosslinked Polyethylene
,”
Clin. Orthop. Relat. Res.
,
469
(
8
), pp.
2262
2277
.
7.
Grübl
,
A.
,
Marker
,
M.
,
Brodner
,
W.
,
Giurea
,
A.
,
Heinze
,
G.
,
Meisinger
,
V.
,
Zehetgruber
,
H.
, and
Kotz
,
R.
, 2007, “
Long Term Follow up of Metal on Metal Total Hip Replacement
,”
J. Orthop. Res.
,
25
(
7
), pp.
841
848
.
8.
Neumann
,
D. R. P.
,
Thaler
,
C.
,
Hitzl
,
W.
,
Huber
,
M.
,
Hofstädter
,
T.
, and
Dorn
,
U.
, 2010, “
Long-Term Results of a Contemporary Metal-on-Metal Total Hip Arthroplasty: A 10-Year Follow-up Study
,”
J. Arthroplasty
,
25
(
5
), pp.
700
708
.
9.
Glassman
,
A.
,
Bobyn
,
J.
, and
Tanzer
,
M.
, 2006, “
New Femoral Designs Do They Influence Stress Shielding?
,”
Clin. Orthop. Relat. Res.
,
453
(
12
), pp.
64
74
.
10.
Adam
,
F.
,
Hammer
,
D. S.
,
Pfautsch
,
S.
, and
Westermann
,
K.
, 2002, “
Early Failure of a Press-Fit Carbon Fiber Hip Prosthesis with a Smooth Surface
,”
J. Antroplasty
,
17
(
2
), pp.
217
223
.
11.
Trebse
,
R.
,
Milosev
,
I.
,
Kovac
,
S.
,
Mikek
,
M.
, and
Pisot
,
V.
, 2005, “
Poor Results from the Isoelastic Total Hip Replacement
,”
Acta Orthop.
,
76
(
2
), pp.
169
176
.
12.
Harvey
,
E.
,
Bobyn
,
J.
,
Tanzer
,
M.
,
Stackpool
,
G.
,
Krygier
,
J.
, and
Hacking
,
S.
, 1999, “
Effect of Flexibility of the Femoral Stem on Bone-Remodeling and Fixation of the Stem in a Canine Total Hip Arthroplasty Model without Cement
,”
J. Bone Jt. Surg.
,
81
(
1
), pp.
93
107
.
13.
Huiskes
,
R.
,
Weinans
,
H.
, and
Rietbergen
,
B.
, 1992, “
The Relationship between Stress Shielding and Bone Resorption around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
,
274
(
1
), pp.
124
134
.
14.
Kuiper
,
J.
, and
Huiskes
,
R.
, 1992, “
Numerical Optimization of Hip-Prosthetic Stem Material
,”
Recent Advances in Computer Methods in Biomechanics and Biomedical Engineering
,
J.
Middleton
,
G. N.
Pande
, and
K. R.
Williams
, eds.,
Books and Journals International Ltd.
,
Swansea
, pp.
76
84
.
15.
Kuiper
,
J. H.
, and
Huiskes
,
R.
, 1997, “
Mathematical Optimization of Elastic Properties: Application to Cementless Hip Stem Design
,”
J. Biomech. Eng.
,
119
(
2
), pp.
166
174
.
16.
Hedia
,
H.
,
Shabara
,
M.
,
El-Midany
,
T.
, and
Fouda
,
N.
, 2006, “
Improved Design of Cementless Hip Stems Using Two-Dimensional Functionally Graded Materials
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
79
(
1
), pp.
42
49
.
17.
Hedia
,
H. S.
, and
Mahmoud
,
N.-A.
, 2004, “
Design Optimization of Functionally Graded Dental Implant
,”
Biomed. Mater. Eng.
,
14
(
2
), pp.
133
143
.
18.
Watari
,
F.
,
Yokoyama
,
A.
,
Saso
,
F.
,
Uo
,
M.
, and
Kawasaki
,
T.
, 1997, “
Fabrication and Properties of Functionally Graded Dental Implant
,”
Composites, Part B
,
28
(
1-2
), pp.
5
11
.
19.
Katti
,
K. S.
, 2004, “
Biomaterials in Total Joint Replacement
,”
Colloids Surf., B
39
(
3
), pp.
133
142
.
20.
Thompson
,
I.
, and
Hench
,
L.
, 1998, “
Mechanical Properties of Bioactive Glasses, Glass-Ceramics and Composites
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
212
(
2
), pp.
127
.
21.
Fraldi
,
M.
,
Esposito
,
L.
,
Perrella
,
G.
,
Cutolo
,
A.
, and
Cowin
,
S.
, 2010, “
Topological Optimization in Hip Prosthesis Design
,”
Biomech. Model. Mechanobiol.
,
9
(
4
), pp.
389
402
.
22.
Bobyn
,
J. D.
,
Poggie
,
R.
,
Krygier
,
J.
,
Lewallen
,
D.
,
Hanssen
,
A.
,
Lewis
,
R.
,
Unger
,
A.
,
O’keefe
,
T.
,
Christie
,
M.
, and
Nasser
,
S.
, 2004, “
Clinical Validation of a Structural Porous Tantalum Biomaterial for Adult Reconstruction
,”
J. Bone Jt. Surg.
,
86
(
Supplement 2
), pp.
123
129
.
23.
Bobyn
,
J.
,
Stackpool
,
G.
,
Hacking
,
S.
,
Tanzer
,
M.
, and
Krygier
,
J.
, 1999, “
Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial
,”
J. Bone Jt. Surg., Br. Vol.
,
81
(
5
), pp.
907
914
.
24.
Parthasarathy
,
J.
,
Starly
,
B.
,
Raman
,
S.
, and
Christensen
,
A.
, 2010, “
Mechanical Evaluation of Porous Titanium (Ti6al4v) Structures with Electron Beam Melting (Ebm)
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
3
), pp.
249
259
.
25.
Heinl
,
P.
,
Müller
,
L.
,
Körner
,
C.
,
Singer
,
R. F.
, and
Müller
,
F. A.
, 2008, “
Cellular Ti-6al-4v Structures with Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting
,”
Acta Biomater.
,
4
(
5
), pp.
1536
1544
.
26.
Stamp
,
R.
,
Fox
,
P.
,
O’neill
,
W.
,
Jones
,
E.
, and
Sutcliffe
,
C.
, 2009, “
The Development of a Scanning Strategy for the Manufacture of Porous Biomaterials by Selective Laser Melting
,”
J. Mater. Sci.: Mater. Med.
,
20
(
9
), pp.
1839
1848
.
27.
Yang
,
S.
,
Leong
,
K.
,
Du
,
Z.
, and
Chua
,
C.
, 2002, “
The Design of Scaffolds for Use in Tissue Engineering. Part Ii. Rapid Prototyping Techniques
,”
Tissue Eng.
,
8
(
1
), pp.
1
11
.
28.
Murr
,
L.
,
Gaytan
,
S.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
Machado
,
B.
,
Hernandez
,
D.
,
Martinez
,
L.
,
Lopez
,
M.
, and
Wicker
,
R.
, 2010, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays
,”
Philos. Trans. R. Soc. London, Ser. A
,
368
(1917), pp.
1999
2032
.
29.
Coelho
,
P.
,
Fernandes
,
P.
,
Guedes
,
J.
, and
Rodrigues
,
H.
, 2008, “
A Hierarchical Model for Concurrent Material and Topology Optimisation of Three-Dimensional Structures
,”
Struct. Multidiscip. Optim.
,
35
(
2
), pp.
107
115
.
30.
Rodrigues
,
H.
,
Guedes
,
J.
, and
Bendsoe
,
M.
, 2002, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidiscip. Optim.
,
24
(
1
), pp.
1
10
.
31.
Gonçalves Coelho
,
P.
,
Rui Fernandes
,
P.
, and
Carriço Rodrigues
,
H.
, 2011, “
Multiscale Modeling of Bone Tissue with Surface and Permeability Control
,”
J. Biomech.
,
44
(
2
), pp.
321
329
.
32.
Coelho
,
P. G.
,
Cardoso
,
J. B.
,
Fernandes
,
P. R.
, and
Rodrigues
,
H. C.
, 2011, “
Parallel Computing Techniques Applied to the Simultaneous Design of Structure and Material
,”
Adv. Eng. Software
,
42
(
5
), pp.
219
227
.
33.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1999,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
34.
Guedes
,
J.
, and
Kikuchi
,
N.
, 1990, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method with Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
(
2
), pp.
143
198
.
35.
Hassani
,
B.
, and
Hinton
,
E.
, 1998, “
A Review of Homogenization and Topology Optimization I-Homogenization Theory for Media with Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
.
36.
Hassani
,
B.
, and
Hinton
,
E.
, 1998, “
A Review of Homogenization and Topology Opimization I I-Analytical and Numerical Solution of Homogenization Equations
,”
Comput. Struct.
,
69
(
6
), pp.
719
738
.
37.
Fang
,
Z.
,
Starly
,
B.
, and
Sun
,
W.
, 2005, “
Computer-Aided Characterization for Effective Mechanical Properties of Porous Tissue Scaffolds
,”
Comput.-Aided Des.
,
37
(
1
), pp.
65
72
.
38.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2005,
The Finite Element Method for Solid and Structural Mechanics
, 6th ed.,
Butterworth-Heinemann
,
Burlington
.
39.
Hollister
,
S.
, and
Kikuchi
,
N.
, 1992, “
A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites
,”
Comput. Mech.
,
10
(
2
), pp.
73
95
.
40.
Pellegrino
,
C.
,
Galvanetto
,
U.
, and
Schrefler
,
B.
, 1999, “
Numerical Homogenization of Periodic Composite Materials with Non Linear Material Components
,”
Int. J. Numer. Methods Eng.
,
46
(
10
), pp.
1609
1637
.
41.
Bragdon
,
C.
,
Jasty
,
M.
,
Greene
,
M.
,
Rubash
,
H.
, and
Harris
,
W.
, 2004, “
Biologic Fixation of Total Hip Implants: Insights Gained from a Series of Canine Studies
,”
J. Bone Jt. Surg.
,
86
(
Supplement 2
), pp.
105
117
.
42.
Harrysson
,
O. L. A.
,
Cansizoglu
,
O.
,
Marcellin-Little
,
D. J.
,
Cormier
,
D. R.
, and
West Ii
,
H. A.
, 2008, “
Direct Metal Fabrication of Titanium Implants with Tailored Materials and Mechanical Properties Using Electron Beam Melting Technology
,”
Mater. Sci. Eng. C
,
28
(
3
), pp.
366
373
.
43.
Wang
,
H. V.
, 2005, “
A Unit Cell Approach for Lightweight Structure and Compliant Mechanism
,” Ph.D. thesis, Georgia Institute Of Technology, Atlanta, GA.
44.
Matsui
,
K.
,
Terada
,
K.
, and
Yuge
,
K.
, 2004, “
Two-Scale Finite Element Analysis of Heterogeneous Solids with Periodic Microstructures
,”
Comput. Struct.
,
82
(
7-8
), pp.
593
606
.
45.
Masters
,
I.
, and
Evans
,
K.
, 1996, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.
46.
Christensen
,
R. M.
, 2000, “
Mechanics of Cellular and Other Low-Density Materials
,”
Int. J. Solids Struct.
,
37
(
1-2
), pp.
93
104
.
47.
Wang
,
A.
, and
Mcdowell
,
D.
, 2004, “
In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs
,”
J. Eng. Mater. Technol.
,
126
(
2
), pp.
137
156
.
48.
Kumar
,
R.
, and
Mcdowell
,
D.
, 2004, “
Generalized Continuum Modeling of 2-D Periodic Cellular Solids
,”
Int. J. Solids Struct.
,
41
(
26
), pp.
7399
7422
.
49.
Warren
,
W.
, and
Byskov
,
E.
, 2002, “
Three-Fold Symmetry Restrictions on Two-Dimensional Micropolar Materials
,”
Eur. J. Mech. A/Solids
,
21
(
5
), pp.
779
792
.
50.
Chen
,
J.
, and
Huang
,
M.
, 1998, “
Fracture Analysis of Cellular Materials: A Strain Gradient Model
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
789
828
.
51.
Wang
,
W.-X.
,
Luo
,
D.
,
Takao
,
Y.
, and
Kakimoto
,
K.
, 2006, “
New Solution Method for Homogenization Analysis and Its Application to the Prediction of Macroscopic Elastic Constants of Materials with Periodic Microstructures
,”
Comput. Struct.
,
84
(
15-16
), pp.
991
1001
.
52.
Andrews
,
E.
,
Gioux
,
G.
,
Onck
,
P.
, and
Gibson
,
L.
, 2001, “
Size Effects in Ductile Cellular Solids. Part II: Experimental Results
,”
Int. J. Mech. Sci.
,
43
(
3
), pp.
701
713
.
53.
Simone
,
A.
, and
Gibson
,
L.
, 1998, “
Effects of Solid Distribution on the Stiffness and Strength of Metallic Foams
,”
Acta Mater.
,
46
(
6
), pp.
2139
2150
.
54.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Methods, and Applications
,
Springer-Verlag
,
Berlin
.
55.
Hassani
,
B.
, and
Hinton
,
E.
, 1998, “
A Review of Homogenization and Topology Optimization III-Topology Optimization Using Optimality Criteria
,”
Comput. Struct.
,
69
(
6
), pp.
739
756
.
56.
Díaaz
,
A.
, and
Kikuchi
,
N.
, 1992, “
Solutions to Shape and Topology Eigenvalue Optimization Problems Using a Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
35
(
7
), pp.
1487
1502
.
57.
Suzuki
,
K.
, and
Kikuchi
,
N.
, 1991, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
291
318
.
58.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
59.
Hassani
,
B.
, 1996, “
A Direct Method to Derive the Boundary Conditions of the Homogenization Equation for Symmetric Cells
,”
Commun. Numer. Methods Eng.
,
12
(
3
), pp.
185
196
.
60.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H.
, 1992, “
Effects of Material Properties of Femoral Hip Components on Bone Remodeling
,”
J. Orthop. Res.
,
10
(
6
), pp.
845
853
.
61.
Hoffman
,
O.
, 1967, “
The Brittle Strength of Orthotropic Material
,”
J. Compos. Mater.
,
1
(
3
), pp.
200
206
.
62.
Pal
,
B.
,
Gupta
,
S.
, and
New
,
A.
, 2009, “
A Numerical Study of Failure Mechanisms in the Cemented Resurfaced Femur: Effects of Interface Characteristics and Bone Remodelling
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
223
(
4
), pp.
471
484
.
63.
Carter
,
D.
,
Orr
,
T.
, and
Fyhrie
,
D.
, 1989, “
Relationships between Loading History and Femoral Cancellous Bone Architecture
,”
J. Biomech.
,
22
(
3
), pp.
231
244
.
64.
Bidanda
,
B.
, and
Bártolo
,
P.
, 2008,
Virtual Prototyping & Bio Manufacturing in Medical Applications
,
Springer-Verlag
,
Berlin
, Chap. 5.
65.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
, 2002, “
A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-Ii
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
66.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2005,
The Finite Element Method for Solid and Structural Mechanics
,
Butterworth-Heinemann
,
Burlington
.
67.
Objet-Geometries
,
I.
, 2011, http:/www.objet.com/
68.
Lefik
,
M.
, and
Schrefler
,
B.
, 1996, “
FE Modelling of a Boundary Layer Corrector for Composites Using the Homogenization Theory
,”
Eng. Comput.
,
13
(
6
), pp.
31
42
.
69.
Dumontet
,
H.
, 1986, “
Study of a Boundary Layer Problem in Elastic Composite Materials
,”
RAIRO Model. Math. Anal. Numer
,
20
(
2
), pp.
265
286
.
70.
Kruch
,
S.
, 2007, “
Homogenized and Relocalized Mechanical Fields
,”
J. Strain Anal. Eng. Des.
,
42
(
4
), pp.
215
226
.
71.
Ghosh
,
S.
,
Lee
,
K.
, and
Raghavan
,
P.
, 2001, “
A Multi-Level Computational Model for Multi-Scale Damage Analysis in Composite and Porous Materials
,”
Int. J. Solids Struct.
,
38
(
14
), pp.
2335
2385
.
72.
Cheah
,
C.
,
Chua
,
C.
,
Leong
,
K.
, and
Chua
,
S.
, 2003, “
Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 2: Parametric Library and Assembly Program
,”
Int. J. Adv. Manuf. Technol.
,
21
(
4
), pp.
302
312
.
73.
Cheah
,
C.
,
Chua
,
C.
,
Leong
,
K.
, and
Chua
,
S.
, 2003, “
Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 1: Investigation and Classification
,”
Int. J. Adv. Manuf. Technol.
,
21
(
4
), pp.
291
301
.
74.
Viceconti
,
M.
,
Monti
,
L.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
, and
Toni
,
A.
, 2001, “
Even a Thin Layer of Soft Tissue May Compromise the Primary Stability of Cementless Hip Stems
,”
Clin. Biomech.
,
16
(
9
), pp.
765
775
.
75.
Viceconti
,
M.
,
Brusi
,
G.
,
Pancanti
,
A.
, and
Cristofolini
,
L.
, 2006, “
Primary Stability of an Anatomical Cementless Hip Stem: A Statistical Analysis
,”
J. Biomech.
,
39
(
7
), pp.
1169
1179
.
76.
Abdul-Kadir
,
M. R.
,
Hansen
,
U.
,
Klabunde
,
R.
,
Lucas
,
D.
, and
Amis
,
A.
, 2008, “
Finite Element Modelling of Primary Hip Stem Stability: The Effect of Interference Fit
,”
J. Biomech.
,
41
(
3
), pp.
587
594
.
77.
Viceconti
,
M.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
,
Baleani
,
M.
, and
Cristofolini
,
L.
, 2000, “
Large-Sliding Contact Elements Accurately Predict Levels of Bone-Implant Micromotion Relevant to Osseointegration
,”
J. Biomech.
,
33
(
12
), pp.
1611
1618
.
78.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
, 1992, “
The Behavior of Adaptive Bone-Remodeling Simulation Models
,”
J. Biomech.
,
25
(
12
), pp.
1425
1441
.
79.
Boyle
,
C.
, and
Kim
,
I. Y.
, 2011, “
Three-Dimensional Micro-Level Computational Study of Wolff’s Law Via Trabecular Bone Remodeling in the Human Proximal Femur Using Design Space Topology Optimization
,”
J. Biomech.
,
44
(
5
), pp.
935
942
.
80.
Boyle
,
C.
, and
Kim
,
I. Y.
, 2011, “
Comparison of Different Hip Prosthesis Shapes Considering Micro-Level Bone Remodeling and Stress-Shielding Criteria Using Three-Dimensional Design Space Topology Optimization
,”
J. Biomech.
,
44
(
9
), pp.
1722
1728
.
You do not currently have access to this content.