Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific material properties in situ. Multidimensional experimental data available from a previous cadaver study by Erdemir et al. (“An Elaborate Data Set Characterizing the Mechanical Response of the Foot,” ASME J. Biomech. Eng., 131(9), pp. 094502) was used for model development, optimization, and evaluation of material properties. A specimen-specific three-dimensional finite element representation was developed. Heel pad material properties were determined using inverse finite element analysis by fitting the model behavior to the experimental data. Compression dominant loading, applied using a spherical indenter, was used for optimization of the material properties. The optimized material properties were evaluated through simulations representative of a combined loading scenario (compression and anterior-posterior shear) with a spherical indenter and also of a compression dominant loading applied using an elevated platform. Optimized heel pad material coefficients were 0.001084 MPa (μ), 9.780 (α) (with an effective Poisson’s ratio (ν) of 0.475), for a first-order nearly incompressible Ogden material model. The model predicted structural response of the heel pad was in good agreement for both the optimization (<1.05% maximum tool force, 0.9% maximum tool displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.

References

References
1.
De Clercq
,
D.
,
Aerts
,
P.
, and
Kunnen
,
M.
, 1994, “
The Mechanical Characteristics of the Human Heel Pad During Foot Strike in Running: An In Vivo Cineradiographic Study
,”
J. Biomech.
,
27
(
10
), pp.
1213
1222
.
2.
Rome
,
K.
, 1998, “
Mechanical Properties of the Heel Pad: Current Theory and Review of the Literature
,”
Foot
,
8
(
4
), pp.
179
185
.
3.
Bonanno
,
D. R.
,
Landorf
,
K. B.
, and
Menz
,
H. B.
, 2011, “
Pressure-Relieving Properties of Various Shoe Inserts in Older People With Plantar Heel Pain
,”
Gait and Posture
,
33
(
3
), pp.
385
389
.
4.
Sopher
,
R.
,
Nixon
,
J.
,
McGinnis
,
E.
, and
Gefen
,
A.
, 2011, “
The Influence of Foot Posture, Support Stiffness, Heel Pad Loading and Tissue Mechanical Properties on Biomechanical Factors Associated With a Risk of Heel Ulceration
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
4
), pp.
572
582
.
5.
Gefen
,
A.
, 2010, “
The Biomechanics of Heel Ulcers
,”
J. Tissue Viability
,
19
(
4
), pp.
124
131
.
6.
Luo
,
G.
,
Houston
,
V. L.
,
Garbarini
,
M. A.
,
Beattie
,
A. C.
, and
Thongpop
,
C.
, 2011, “
Finite Element Analysis of Heel Pad With Insoles
,”
J. Biomech.
,
44
(
8
), pp.
1559
1565
.
7.
Goske
,
S.
,
Erdemir
,
A.
,
Petre
,
M.
,
Budhabhatti
,
S.
, and
Cavanagh
,
P. R.
, 2006, “
Reduction of Plantar Heel Pressures: Insole Design Using Finite Element Analysis
,”
J. Biomech.
,
39
(
13
), pp.
2363
2370
.
8.
Cheung
,
J. T.
, and
Zhang
,
M.
, 2005, “
A 3-Dimensional Finite Element Model of the Human Foot and Ankle for Insole Design
,”
Arch. Phys. Med. Rehabil.
,
86
(
2
), pp.
353
358
.
9.
Cho
,
J.
,
Park
,
S.
,
Ryu
,
S.
,
Kim
,
S.
, and
Lee
,
S.
, 2009, “
Landing Impact Analysis of Sports Shoes Using 3-D Coupled Foot-Shoe Finite Element Model
,”
J. Mech. Sci. Technol.
,
23
(
10
), pp.
2583
2591
.
10.
Chen
,
W.
,
Lee
,
T.
,
Lee
,
P. V.
,
Lee
,
J. W.
, and
Lee
,
S.
, 2010, “
Effects of Internal Stress Concentrations in Plantar Soft-Tissue-A Preliminary Three-Dimensional Finite Element Analysis
,”
Med. Eng. Phys.
,
32
(
4
), pp.
324
331
.
11.
Erdemir
,
A.
,
Viveiros
,
M. L.
,
Ulbrecht
,
J. S.
, and
Cavanagh
,
P. R.
, 2006, “
An Inverse Finite-Element Model of Heel-Pad Indentation
,”
J. Biomech.
,
39
(
7
), pp.
1279
1286
.
12.
Gu
,
Y.
,
Li
,
J.
,
Ren
,
X.
,
Lake
,
M. J.
, and
Zeng
,
Y.
, 2010, “
Heel Skin Stiffness Effect on the Hind Foot Biomechanics During Heel Strike
,”
Skin Res. Technol.
,
16
(
3
), pp.
291
296
.
13.
Tao
,
K.
,
Wang
,
D.
,
Wang
,
C.
,
Wang
,
X.
,
Liu
,
A.
,
Nester
,
C. J.
, and
Howard
,
D.
, 2009, “
An In Vivo Experimental Validation of a Computational Model of Human Foot
,”
J. Bionic Eng.
,
6
(
4
), pp.
387
397
.
14.
Tong
,
J.
,
Lim
,
C. S.
, and
Goh
,
O. L.
, 2003, “
Technique to Study the Biomechanical Properties of the Human Calcaneal Heel Pad
,”
Foot
,
13
(
2
), pp.
83
91
.
15.
Hsu
,
T. C.
,
Wang
,
C. L.
,
Shau
,
Y. W.
,
Tang
,
F. T.
,
Li
,
K. L.
, and
Chen
,
C. Y.
, 2000, “
Altered Heel-Pad Mechanical Properties in Patients With Type 2 Diabetes Mellitus
,”
Diabetic Med.
,
17
(
12
), pp.
854
859
.
16.
Kinoshita
,
H.
,
Francis
,
P. R.
,
Murase
,
T.
,
Kawai
,
S.
, and
Ogawa
,
T.
, 1996, “
The Mechanical Properties of the Heel Pad in Elderly Adults
,”
Eur. J. Appl. Physiol.
,
73
(
5
), pp.
404
409
.
17.
Lafortune
,
M. A.
, and
Lake
,
M. J.
, 1995, “
Human Pendulum Approach to Simulate and Quantify Locomotor Impact Loading
,”
J. Biomech.
,
28
(
9
), pp.
1111
1114
.
18.
Miller-Young
,
J. E.
,
Duncan
,
N. A.
, and
Baroud
,
G.
, 2002, “
Material Properties of the Human Calcaneal Fat Pad in Compression: Experiment and Theory
,”
J. Biomech.
,
35
(
12
), pp.
1523
1531
.
19.
Ledoux
,
W. R.
, and
Blevins
,
J. J.
, 2007, “
The Compressive Material Properties of the Plantar Soft Tissue
,”
J. Biomech.
,
40
(
13
), pp.
2975
2981
.
20.
Erdemir
,
A.
,
Sirimamilla
,
P. A.
,
Halloran
,
J. P.
, and
van den Bogert
,
A. J.
, 2009, “
An Elaborate Data Set Characterizing the Mechanical Response of the Foot
,”
ASME J. Biomech. Eng.
,
131
(
9
), p.
094502
.
21.
Cavanagh
,
P. R.
, 1999, “
Plantar Soft Tissue Thickness During Ground Contact in Walking
,”
J. Biomech.
,
32
(
6
), pp.
623
628
.
22.
Abaqus 6.7 Theory Manual 2007, Abaqus, Inc., Pawtucket, RI.
23.
Gefen
,
A.
,
Megido-Ravid
,
M.
, and
Itzchak
,
Y.
, 2001, “
In Vivo Biomechanical Behavior of the Human Heel Pad During the Stance Phase of Gait
,”
J. Biomech.
,
34
(
12
), pp.
1661
1665
.
24.
Pai
,
S.
,
and
Ledoux
,
W. R.
, 2010, “
The Compressive Mechanical Properties of Diabetic and Non-Diabetic Plantar Soft Tissue
,”
J. Biomech.
,
43
(
9
), pp.
1754
1760
.
25.
Petre
,
M.
,
Erdemir
,
A.
,
Panoskaltsis
,
V.
,
Spirka
,
T.
, and
Cavanagh
,
P.
, “
Optimization of Nonlinear Hyperelastic Coefficients of Foot Tissues Using an MRI Deformation Experiment
,” ASME J. Biomech. Eng. (submitted).
26.
Yavuz
,
M.
,
Tajaddini
,
A.
,
Botek
,
G.
, and
Davis
,
B. L.
, 2008, “
Temporal Characteristics of Plantar Shear Distribution: Relevance to Diabetic Patients
,”
J. Biomech.
,
41
(
3
), pp.
556
559
.
You do not currently have access to this content.