In vitro cultures with insulin-like growth factor-1 (IGF-1) and transforming growth factor-β1 (TGF-β1) have previously been shown to differentially modulate the growth of immature bovine articular cartilage. IGF-1 stimulates expansive growth yet decreases compressive moduli and increases compressive Poisson’s ratios, whereas TGF-β1 maintains tissue size, increases compressive moduli, and decreases compressive Poisson’s ratios. The current study’s hypothesis was that sequential application of IGF-1 and TGF-β1 during in vitro culture produces geometric and compressive mechanical properties that lie between extreme values produced when using either growth factor alone. Immature bovine articular cartilage specimens were harvested and either untreated (D0, i.e., day zero) or cultured in vitro for either 6 days with IGF-1 (D6 IGF), 12 days with IGF-1 (D12 IGF), or 6 days with IGF-1 followed by 6 days with TGF-β1 (D12 SEQ, i.e., sequential). Following treatment, all specimens were tested for geometric, biochemical, and compressive mechanical properties. Relative to D0, D12 SEQ treatment enhanced volumetric growth, but to a lower value than that for D12 IGF. Furthermore, D12 SEQ treatment maintained compressive moduli and Poisson’s ratios at values higher and lower, respectively, than those for D12 IGF. Considering the previously described effects of 12 days of treatment with TGF-β1 alone, D12 SEQ induced both growth and mechanical property changes between those produced with either IGF-1 or TGF-β1 alone. The results suggest that it may be possible to vary the durations of select growth factors, including IGF-1 and TGF-β1, to more precisely modulate the geometric, biochemical, and mechanical properties of immature cartilage graft tissue in clinical repair strategies.

References

References
1.
Sah
,
R. L.
,
Chen
,
A. C.
,
Chen
,
S. S.
,
Li
,
K. W.
,
DiMicco
,
M. A.
,
Kurtis
,
M. S.
,
Lottman
,
L. M.
, and
Sandy
,
J. D.
, 2001, “
Articular Cartilage Repair
,”
Arthritis and Allied Conditions. A Textbook of Rheumatology
,
W. J.
Koopman
,
ed.
,
Lippincott, Williams & Wilkins
,
Philadelphia
, pp.
2264
2278
.
2.
Darling
,
E. M.
, and
Athanasiou
,
K. A.
, 2003, “
Biomechanical Strategies for Articular Cartilage Regeneration
,”
Ann. Biomed. Eng.
,
31
(
9
), pp.
1114
1124
.
3.
Hunziker
,
E. B.
, 2002, “
Articular Cartilage Repair: Basic Science and Clinical Progress. A Review of the Current Status and Prospects
,”
Osteoarthritis Cartilage
,
10
, pp.
432
463
.
4.
Smith
,
G. D.
,
Knutsen
,
G.
, and
Richardson
,
J. B.
, 2005, “
A Clinical Review of Cartilage Repair Techniques
,”
J. Bone Joint Surg. Br.
,
87B
(
4
), pp.
445
449
.
5.
Morales
,
T. I.
, and
Roberts
,
A. B.
, 1988, “
Transforming Growth Factor-β Regulates the Metabolism of Proteoglycans in Bovine Cartilage Organ Cultures
,” J. Biol. Chem.,
263
, pp.
12828
12831
. Available at: http://www.jbc.org/content/263/26/12828.shorthttp://www.jbc.org/content/263/26/12828.short.
6.
Schalkwijk
,
J.
Joosten
,
L. A. B.
,
van den Berg
,
W. B.
,
van Wyk
,
J. J.
, and
van de Putte
,
L. B. A.
, 1989, “
Insulin-Like Growth Factor Stimulation of Chondrocyte Proteoglycan Synthesis by Human Synovial Fluid
,”
Arthritis Rheum.
,
32
, pp.
66
71
.
7.
Morales
,
T. I.
, and
Hascall
,
V. C.
, 1991, “
Transforming Growth Factor-β1 Stimulates Synthesis of Proteoglycan Aggregates in Calf Articular Organ Cultures
,”
Arch. Biochem. Biophys.
,
286
, pp.
99
106
.
8.
Sah
,
R. L.
,
Trippel
,
S. B.
, and
Grodzinsky
,
A. J.
, 1996, “
Differential Effects of Serum, Insulin-Like Growth Factor-I, and Fibroblast Growth Factor-2 on the Maintenance of Cartilage Physical Properties during Long-Term Culture
,”
J. Orthop. Res.
,
14
, pp.
44
52
.
9.
Williams
,
G. M.
,
Dills
,
K.
,
Flores
,
C.
,
Stender
,
M.
,
Stewart
,
K.
,
Nelson
,
L.
,
Chen
,
A.
,
Masuda
,
K.
,
Hazelwood
,
S.
,
Klisch
,
S. M.
, and
Sah
,
R. L.
, 2010, “
Differential Regulation of Immature Articular Cartilage Compressive Moduli and Poisson’s Ratios by in vitro Stimulation with IGF-1 and TGF-β1
,”
J. Biomech.
,
43
, pp.
2501
2507
.
10.
Sah
,
R. L.
,
Chen
,
A. C.
,
Grodzinsky
,
A. J.
, and
Trippel
,
S. B.
, 1994, “
Differential Effects of bFGF and IGF-I on Matrix Metabolism in Calf and Adult Bovine Cartilage Explants
,”
Arch. Biochem. Biophys.
,
308
, pp.
137
147
.
11.
Ficklin
,
T. P.
,
Thomas
,
G. C.
,
Barthel
,
J. C.
,
Asanbaeva
,
A.
,
Thonar
,
E. J.
,
Masuda
,
K.
,
Chen
,
A. C.
,
Sah
,
R. L.
,
Davol
,
A.
, and
Klisch
,
S. M.
, 2007, “
Articular Cartilage Mechanical and Biochemical Property Relations Before and After in vitro Growth
,”
J. Biomech.
,
40
, pp.
3607
3614
.
12.
Asanbaeva
,
A.
,
Masuda
,
K.
,
Thonar
,
E. J.-M. A.
,
Klisch
,
S. M.
, and
Sah
,
R. L.
, 2008, “
Regulation of Immature Cartilage Growth by IGF-I, TGF-Beta 1, BMP-7, and PDGF-AB: Role of Metabolic Balance between Fixed Charge and Collagen Network
,”
Biomech. Model. Mechanobiol.
,
7
, pp.
263
276
.
13.
Stender
,
M.
,
Balcom
,
N.
,
Berg-Johansen
,
B.
,
Dills
,
K.
,
Dyk
,
D.
,
Hazelwood
,
S.
,
Sah
,
R.
, and
Klisch
,
S.
, 2011, “
Differential Regulation of Articular Cartilage Tensile Properties by IGF-1 and TGF-B1 during in vitro Growth
,” International Conference on the Mechanics of Biomaterials and Tissues Hawaii, December 11-15, 2011.
14.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
, 2001, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
, pp.
1
12
.
15.
Williamson
,
A. K.
,
Chen
,
A. C.
, and
Sah
,
R. L.
, 2001, “
Compressive Properties and Function-Composition Relationships of Developing Bovine Articular Cartilage
,”
J. Orthop. Res.
,
19
, pp.
1113
1121
.
16.
Kim
,
Y. J.
,
Sah
,
R. L. Y.
,
Doong
,
J. Y. H.
, and
Grodzinsky
,
A. J.
, 1988, “
Fluorometric Assay of DNA in Cartilage Explants Using Hoechst 33258
,”
Anal. Biochem.
,
174
, pp.
168
176
.
17.
Herbage
,
D.
,
Bouillet
,
J.
, and
Bernengo
,
J.-C.
, 1977, “
Biochemical and Physicochemical Characterization of Pepsin-Solubilized Type-II Collagen from Bovine Articular Cartilage
,”
Biochem. J.
,
161
, pp.
303
312
. Available at: http://www.biochemj.org/bj/161/bj1610303.htmhttp://www.biochemj.org/bj/161/bj1610303.htm.
18.
Pal
,
S.
,
Tang
,
L.-H.
,
Choi
,
H.
,
Habermann
,
E.
,
Rosenberg
,
L.
,
Roughley
,
P.
, and
Poole
,
A. R.
, 1981, “
Structural Changes during Development in Bovine Fetal Epiphyseal Cartilage
,”
Coll. Relat. Res.
,
1
, pp.
151
176
.
19.
Kiviranta
,
P.
,
Rieppo
,
J.
,
Korhonen
,
R. K.
,
Julkunen
,
P.
,
Toyras
,
J.
, and
Jurvelin
,
J. S.
, 2006, “
Collagen Network Primarily Controls Poisson’s Ratio of Bovine Articular Cartilage in Compression
,”
J. Orthop. Res.
,
24
, pp.
690
699
.
20.
Williamson
,
A. K.
,
Chen
,
A. C.
,
Masuda
,
K.
,
Thonar
,
E. J.-M. A.
, and
Sah
,
R. L.
, 2003, “
Tensile Mechanical Properties of Bovine Articular Cartilage: Variations with Growth and Relationships to Collagen Network Components
,”
J. Orthop. Res.
,
21
, pp.
872
880
.
21.
Rieppo
,
J.
,
Hyttinen
,
M. M.
,
Halmesmaki
,
E.
,
Ruotsalainen
,
H.
,
Vasara
,
A.
,
Kiviranta
,
I.
,
Jurvelin
,
J. S.
, and
Helminen
,
H. J.
, 2009, “
Changes in Spatial Collagen Content and Collagen Network Architecture in Porcine Articular Cartilage during Growth and Maturation
,”
Osteoarthritis Cartilage
,
17
(
4
), pp.
448
455
.
22.
Hyttinen
,
M. M.
,
Holopainen
,
J. R.
,
van Weeren
,
P.
,
Firth
,
E. C.
,
Helminen
,
H. J.
, and
Brama
,
P. A. J.
, 2009, “
Changes in Collagen Fibril Network Organization and Proteoglycan Distribution in Equine Articular Cartilage during Maturation and Growth
,”
J. Anat.
,
215
(
5
), pp.
584
591
.
23.
Julkunen
,
P.
,
Iivarinen
,
J.
,
Brama
,
P. A.
,
Arokoski
,
J.
,
Jurvelin
,
J. S.
, and
Helminen
,
H. J.
, 2010, “
Maturation of Collagen Fibril Network Structure in Tibial and Femoral Cartilage of Rabbits
,”
Osteoarthritis Cartilage
,
18
(
3
), pp.
406
415
.
24.
van Turnhout
,
M. C.
,
Schipper
,
H.
,
Engel
,
B.
,
Buist
,
W.
,
Kranenbarg
,
S.
, and
van Leeuwen
,
J. L.
, 2010, “
Postnatal Development of Collagen Structure in Ovine Articular Cartilage
,”
BMC Dev. Biol.
,
10
,p.
62
.
25.
Bonomi
,
M.
,
Branduardi
,
D.
,
Bussi
,
G.
,
Camilloni
,
C.
,
Provasi
,
D.
,
Raiteri
,
P.
,
Donadio
,
D.
,
Marinelli
,
F.
,
Pietrucci
,
F.
,
Broglia
,
R. A.
, and
Parrinello
,
M.
, 2009, “
PLUMED: A Portable Plugin for Free-Energy Calculations with Molecular Dynamics
,”
Comput. Phys. Commun.
,
180
(
10
), pp.
1961
1972
.
26.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
, 1997, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
, pp.
499
506
.
27.
Klein
,
T. J.
,
Chaudhry
,
M.
,
Bae
,
W. C.
, and
Sah
,
R. L.
, 2007, “
Depth-Dependent Biomechanical and Biochemical Properties of Fetal, Newborn, and Tissue-Engineered Articular Cartilage
,”
J. Biomech.
,
40
, pp.
182
190
.
28.
Bian
,
L.
,
Stoker
,
A. M.
,
Marberry
,
K. M.
,
Ateshian
,
G. A.
,
Cook
,
J. L.
, and
Hung
,
C. T.
, 2010, “
Effects of Dexamethasone on the Functional Properties of Cartilage Explants During Long-Term Culture
,”
Am. J. Sports Med.
,
38
(
1
), pp.
78
85
.
29.
Hwang
,
J.
,
Kyubwa
,
E.
,
Bae
,
W.
,
Bugbee
,
W.
,
Masuda
,
K.
, and
Sah
,
R.
, 2010, “
in vitro Calcification of Immature Bovine Articular Cartilage: Formation of a Functional Zone of Calcified Cartilage
,”
Cartilage
,
1
, pp.
287
297
.
30.
Pearsall
,
A. W.
, IV
,
Tucker
,
J. A.
,
Hester
,
R. B.
, and
Heitman
,
R. J.
, 2004, “
Chondrocyte Viability in Refrigerated Osteochondral Allografts Used for Transplantation within the Knee
,”
Am. J. Sports Med.
,
32
(
1
), pp.
125
131
.
31.
Allen
,
R. T.
,
Robertson
,
C. M.
,
Pennock
,
A. T.
,
Bugbee
,
W. D.
,
Harwood
,
F. L.
,
Wong
,
V. W.
,
Chen
,
A. C.
,
Sah
,
R. L.
, and
Amiel
,
D.
, 2005, “
Analysis of Stored Osteochondral Allografts at the Time of Surgical Implantation
,”
Am. J. Sports Med.
,
33
, pp.
1479
1484
.
You do not currently have access to this content.