Accurate material properties of developing embryonic tissues are a crucial factor in studies of the mechanics of morphogenesis. In the present work, we characterize the viscoelastic material properties of the looping heart tube in the chick embryo through nonlinear finite element modeling and microindentation experiments. Both hysteresis and ramp-hold experiments were performed on the intact heart and isolated cardiac jelly (extracellular matrix). An inverse computational method was used to determine the constitutive relations for the myocardium and cardiac jelly. With both layers assumed to be quasilinear viscoelastic, material coefficients for an Ogden type strain-energy density function combined with Prony series of two terms or less were determined by fitting numerical results from a simplified model of a heart segment to experimental data. The experimental and modeling techniques can be applied generally for determining viscoelastic material properties of embryonic tissues.

References

References
1.
Taber
,
L.
, 1995, “
Biomechanics of Growth, Remodeling, and Morphogenesis
,”
Appl. Mech. Rev.
,
48
, pp.
487
545
.
2.
Manner
,
J.
, 2000, “
Cardiac Looping in the Chick Embryo: A Morphological Review With Special Reference to Terminological and Biomechanical Aspects of the Looping Process
,”
Anat. Rec. Part A
,
259
(
3
), pp.
248
262
.
3.
Ramsdell
,
A.
, 2005, “
Left-Right Asymmetry and Congenital Cardiac Defects: Getting to the Heart of the Matter in Vertebrate Left-Right Axis Determination
,”
Dev. Biol.
,
288
(
1
), pp.
1
20
.
4.
Hamburger
,
V.
, and
Hamilton
,
H. L.
, 1951, “
A Series of Normal Stages in the Development of the Chick Embryo
,”
J. Morphol.
,
88
, pp.
49
92
.
5.
Zamir
,
E. A.
, and
Taber
,
L. A.
, 2004, “
Material Properties and Residual Stress in the Stage 12 Chick Heart During Cardiac Looping
,”
J. Biomech. Eng.
,
126
, pp.
823
830
.
6.
Forgacs
,
G.
,
Foty
,
R.
,
Shafrir
,
Y.
, and
Steinberg
,
M.
, 1998, “
Viscoelastic Properties of Living Embryonic Tissues: A Quantitative Study
,”
Biophys. J.
,
74
(
5
), pp.
2227
2234
.
7.
Miller
,
C. E.
,
Vanni
,
M. A.
, and
Keller
,
B. B.
, 1997, “
Characterization of Passive Embryonic Myocardium by Quasi-Linear Viscoelasticity Theory
,”
J. Biomech.
,
30
(
9
), pp.
985
988
.
8.
Miller
,
C.
, and
Wong
,
C.
, 2000, “
Trabeculated Embryonic Myocardium Shows Rapid Stress Relaxation and Non-Quasi-Linear Viscoelastic Behavior
,”
J. Biomech.
,
33
(
5
), pp.
615
622
.
9.
Manasek
,
F.
, 1968, “
Embryonic Development of the Heart. I. A Light and Electron Microscopic Study of Myocardial Development in the Early Chick Embryo
,”
J. Morphol.
,
125
, pp.
329
65
.
10.
Voronov
,
D.
, and
Taber
,
L.
, 2002, “
Cardiac Looping in Experimental Conditions: Effects of Extraembryonic Forces
,”
Dev. Dyn.
,
224
(
4
), pp.
413
421
.
11.
Zamir
,
E. A.
,
Srinivasan
,
V.
,
Perucchio
,
R.
, and
Taber
,
L. A.
, 2003, “
Mechanical Asymmetry in the Embryonic Chick Heart During Looping
,”
Ann. Biomed. Eng.
,
31
, pp.
1327
1336
.
12.
Ogden
,
R. W.
, 1972, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. Lond. A.
,
326
, pp.
564
584
.
13.
Ogden
,
R. W.
,
Saccomandi
,
G.
, and
Sgura
,
I.
, 2004, “
Fitting Hyperelastic Models to Experimental Data
,”
Comput. Mech.
,
34
(
6
), pp.
484
502
.
14.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1997,
Computational Inelasticity
Springer
,
New York
.
15.
Fung
,
Y.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
Springer
,
New York
.
16.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
John Wiley and Sons
,
New York
.
17.
Price
,
M.
,
Caprette
,
D.
, and
Gomer
,
R.
, 1994, “
Different Temporal Patterns of Expression Result in the Same Type, Amount, and Distribution of Filamin (ABP) in Cardiac and Skeletal Myofibrils
,”
Cell Motil. Cytoskeleton
,
27
(
3
), pp.
248
261
.
18.
Rudy
,
D.
,
Yatskievych
,
T.
,
Antin
,
P.
, and
Carol
,
C.
, 2001, “
Assembly of Thick, Thin, and Titin Filaments in Chick Precardiac Explants
,”
Dev. Dyn.
,
221
(
1
), pp.
61
71
.
19.
Tsaturyan
,
A.
,
Izacov
,
V.
,
Zhelamsky
,
S.
, and
Bykov
,
B.
, 1984, “
Extracellular Fluid Filtration as the Reason for the Viscoelastic Behaviour of the Passive Myocardium
,”
J. Biomech.
,
17
(
10
), pp.
749
755
.
20.
Nakamura
,
A.
, and
Manasek
,
F.
, 1981, “
An Experimental Study of the Relation of Cardiac Jelly to the Shape of the Early Chick Embryonic Heart
,”
J. Embryol. Exp. Morphol.
,
65
(
1
), pp.
235
256
.
21.
Humphrey
J. D.
, 1999, “
An Evaluation of Pseudoelastic Predictors Used in Arterial Mechanics
,”
J. Biomech. Eng.
,
121
, pp.
259
262
.
22.
Holzapfel
,
G. A.
,
Gasser
,
T. G.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.
You do not currently have access to this content.