The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of the hardness and indentation modulus of newly formed bone tissue as a function of healing time. To do so, a nanoindentation device is employed following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 μm from the cortical bone surface, leading to an initially empty cavity of 200 μm * 4.4 mm. Three New Zealand White rabbits were sacrificed after 4, 7, and 13 weeks of healing time. The bone samples were embedded and analyzed using histological analyses, allowing to distinguish mature and newly formed bone tissue. The bone mechanical properties were then measured in mature and newly formed bone tissue. The results are within the range of hardness and apparent Young’s modulus values reported in previous literature. One-way ANOVA test revealed a significant effect of healing time on the indentation modulus (p < 0.001, F = 111.24) and hardness (p < 0.02, F = 3.47) of bone tissue. A Tukey-Kramer analysis revealed that the biomechanical properties of newly formed bone tissue (4 weeks) were significantly different from those of mature bone tissue. The comparison with the results obtained in Mathieu et al. (2011, “Micro-Brillouin Scattering Measurements in Mature and Newly Formed Bone Tissue Surrounding an Implant,” J. Biomech. Eng., 133, 021006). shows that bone mass density increases by approximately 13.5% between newly formed bone (7 weeks) and mature bone tissue.

References

References
1.
Franchi
,
M.
,
Bacchelli
,
B.
,
Giavaresi
,
G.
,
De Pasquale
,
V.
,
Martini
,
D.
,
Fini
,
M.
,
Giardino
,
R.
, and
Ruggeri
,
A.
, 2007, “
Influence of Different Implant Surfaces on Peri-Implant Osteogenesis: Histomorphometric Analysis in Sheep
,”
J. Periodontol.
,
78
(
5
), pp.
879
888
.
2.
Luo
,
G. M.
,
Sadegh
,
A. M.
,
Alexander
,
H.
,
Jaffe
,
W.
,
Scott
,
D.
, and
Cowin
,
S. C.
, 1999, “
The Effect of Surface Roughness on the Stress Adaptation of Trabecular Architecture Around a Cylindrical Implant
,”
J. Biomech.
,
32
(
3
), pp.
275
284
.
3.
Mori
,
S.
, and
Burr
,
D. B.
, 1993, “
Increased Intracortical Remodeling Following Fatigue Damage
,”
Bone
,
14
(
2
), pp.
103
109
.
4.
Orlik
,
J.
,
Zhurov
,
A.
, and
Middleton
,
J.
, 2003, “
On the Secondary Stability of Coated Cementless Hip Replacement: Parameters That Affected Interface Strength
,”
Med. Eng. Phys.
,
25
(
10
), pp.
825
831
.
5.
Duyck
,
J.
,
Vandamme
,
K.
,
Geris
,
L.
,
Van Oosterwyck
,
H.
, De
Cooman
,
M.
,
Vandersloten
,
J.
,
Puers
,
R.
, and
Naert
,
I.
, 2006, “
The Influence of Micro-Motion on the Tissue Differentiation Around Immediately Loaded Cylindrical Turned Titanium Implants
,”
Arch. Oral Biol.
,
51
(
1
), pp.
1
9
.
6.
Winter
,
W.
,
Heckmann
,
S. M.
, and
Weber
,
H. P.
, 2004, “
A Time-Dependent Healing Function for Immediate Loaded Implants
,”
J. Biomech.
,
37
(
12
), pp.
1861
1867
.
7.
Mathieu
,
V.
,
Fukui
,
K.
,
Matsukawa
,
M.
,
Kawabe
,
M.
,
Vayron
,
R.
,
Soffer
,
E.
,
Anagnostou
,
F.
, and
Haiat
,
G.
, 2011, “
Micro-Brillouin Scattering Measurements in Mature and Newly Formed Bone Tissue Surrounding an Implant
,”
J. Biomech. Eng.
,
133
,
021006
.
8.
Mathieu
,
V.
,
Anagnostou
,
F.
,
Soffer
,
E.
, and
Haiat
,
G.
, 2010, “
Ultrasonic Evaluation of Dental Implant Biomechanical Stability: An in vitro Study
,”
Ultrasound Med. Biol.
,
37
(
2
), pp.
262
270
.
9.
Mathieu
,
V.
,
Vayron
,
R.
,
Barthel
,
E.
,
Dalmas
,
D.
,
Soffer
,
J. E.
,
Anagostou
,
F.
, and
Haiat
,
G.
, 2012, “
Mode III Cleavage of a Coin-Shaped Titanium Implant in Bone: Effect of Friction and Crack Propagation
,”
J. Mech. Behav. Biomed. Mater.
,
8
, pp.
194
203
.
10.
Mathieu
,
V.
,
Anagnostou
,
F.
,
Soffer
,
E.
, and
Haiat
,
G.
, 2011, “
Numerical Simulation of Ultrasonic Wave Propagation for the Evaluation of Dental Implant Biomechanical Stability
,”
J. Acoust. Soc. Am.
,
129
(
6
), pp.
4062
4072
.
11.
Mathieu
,
V.
,
Soffer
,
J. E.
,
Anagnostou
,
F.
, and
Haïat
,
G.
, 2012, “
Influence of Healing Time on the Ultrasonic Response of the Bone-Implant Interface
,”
Ultrasound Med. Biol.
, (in press).
12.
Chang
,
M. C.
,
Ko
,
C. C.
,
Liu
,
C. C.
,
Douglas
,
W. H.
,
DeLong
,
R.
,
Seong
,
W. J.
,
Hodges
,
J.
, and
An
,
K. N.
, 2003, “
Elasticity of Alveolar Bone Near Dental Implant-Bone Interfaces After one Month’s Healing
,”
J. Biomech.
,
36
(
8
), pp.
1209
1214
.
13.
Seong
,
W. J.
,
Kim
,
U. K.
,
Swift
,
J. Q.
,
Hodges
,
J. S.
, and
Ko
,
C. C.
, 2009, “
Correlations Between Physical Properties of Jawbone and Dental Implant Initial Stability
,”
J. Prosthet. Dent.
,
101
(
5
), pp.
306
318
.
14.
Ronold
,
H. J.
, and
Ellingsen
,
J. E.
, 2002, “
The Use of a Coin Shaped Implant for Direct in Situ Measurement of Attachment Strength for Osseointegrating Biomaterial Surfaces
,”
Biomaterials
,
23
(
10
), pp.
2201
2209
.
15.
Ronold
,
H. J.
,
Ellingsen
,
J. E.
, and
Lyngstadaas
,
S. P.
, 2003, “
Tensile Force Testing of Optimized Coin-Shaped Titanium Implant Attachment Kinetics in the Rabbit Tibiae
,”
J. Mater. Sci.: Mater. Med.
,
14
(
10
), pp.
843
849
.
16.
Ronold
,
H. J.
, and
Ellingsen
,
J. E.
, 2002, “
Effect of Micro-Roughness Produced by TiO2 Blasting - Tensile Testing of Bone Attachment by Using Coin-Shaped Implants
,”
Biomaterials
,
23
(
21
), pp.
4211
4219
.
17.
Ronold
,
H. J.
,
Lyngstadaas
,
S. P.
, and
Ellingsen
,
J. E.
, 2003, “
A Study on the Effect of Dual Blasting With Tio(2) on Titanium Implant Surfaces on Functional Attachment in Bone
,”
J. Biomed. Mater. Res. Part A
,
67A
(
2
), pp.
524
530
.
18.
Ronold
,
H. J.
,
Lyngstadaas
,
S. P.
, and
Ellingsen
,
J. E.
, 2003, “
Analysing the Optimal Value for Titanium Implant Roughness in Bone Attachment Using a Tensile Test
,”
Biomaterials
,
24
(
25
), pp.
4559
4564
.
19.
Zysset
,
P. K.
, 2009, “
Indentation of Bone Tissue: A Short Review
,”
Osteoporosis Int.
,
20
(
6
), pp.
1049
1055
.
20.
Lewis
,
G.
, and
Nyman
,
J. S.
, 2008, “
The Use of Nanoindentation for Characterizing the Properties of Mineralized Hard Tissues: State-Of-The Art Review
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
87B
(
1
), pp.
286
301
.
21.
Shibata
,
Y.
,
He
,
L. H.
,
Toda
,
Y.
,
Kataoka
,
Y.
,
Fujisawa
,
N.
,
Miyazaki
,
T.
, and
Swain
,
M. V.
, 2008, “
Micromechanical Evaluation of Mineralized Multilayers
,”
J. Biomech.
,
41
(
16
), pp.
3414
3418
.
22.
Hoffler
,
C. E.
,
Moore
,
K. E.
,
Kozloff
,
K.
,
Zysset
,
P. K.
,
Brown
,
M. B.
, and
Goldstein
,
S. A.
, 2000, “
Heterogeneity of Bone Lamellar-Level Elastic Moduli
,”
Bone
,
26
(
6
), pp.
603
609
.
23.
Rho
,
J. Y.
,
Zioupos
,
P.
,
Currey
,
J. D.
, and
Pharr
,
G. M.
, 1999, “
Variations in the Individual Thick Lamellar Properties Within Osteons by Nanoindentation
,”
Bone
,
25
(
3
), pp.
295
300
.
24.
Rho
,
J. Y.
,
Zioupos
,
P.
,
Currey
,
J. D.
, and
Pharr
,
G. M.
, 2002, “
Microstructural Elasticity and Regional Heterogeneity in Human Femoral Bone of Various Ages Examined by Nano-Indentation
,”
J. Biomech.
,
35
(
2
), pp.
189
198
.
25.
Hengsberger
,
S.
,
Ammann
,
P.
,
Legros
,
B.
,
Rizzoli
,
R.
, and
Zysset
,
P.
, 2005, “
Intrinsic Bone Tissue Properties in Adult Rat Vertebrae: Modulation by Dietary Protein
,”
Bone
,
36
(
1
), pp.
134
141
.
26.
Norman
,
J.
,
Shapter
,
J. G.
,
Short
,
K.
,
Smith
,
L. J.
, and
Fazzalari
,
N. L.
, 2008, “
Micromechanical Properties of Human Trabecular Bone: A Hierarchical Investigation Using Nanoindentation
,”
J. Biomed. Mater. Res.
Part A,
87A
(
1
), pp.
196
202
.
27.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
,
Moore
,
K. E.
, and
Goldstein
,
S. A.
, 1999, “
Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur
,”
J. Biomech.
,
32
(
10
), pp.
1005
1012
.
28.
Gupta
,
H. S.
,
Stachewicz
,
U.
,
Wagermaier
,
W.
,
Roschger
,
P.
,
Wagner
,
H. D.
, and
Fratzl
,
P.
, 2006, “
Mechanical Modulation at the Lamellar Level in Osteonal Bone
,”
J. Mater. Res.
,
21
(
8
), pp.
1913
1921
.
29.
Hofmann
,
T.
,
Heyroth
,
F.
,
Meinhard
,
H.
,
Franzel
,
W.
, and
Raum
,
K.
, 2006, “
Assessment of Composition and Anisotropic Elastic Properties of Secondary Osteon Lamellae
,”
J. Biomech.
,
39
(
12
), pp.
2282
2294
.
30.
Hoc
,
T.
,
Henry
,
L.
,
Verdier
,
M.
,
Aubry
,
D.
,
Sedel
,
L.
, and
Meunier
,
A.
, 2006, “
Effect of Microstructure on the Mechanical Properties of Haversian Cortical Bone
,”
Bone
,
38
(
4
), pp.
466
474
.
31.
Sohn
,
J.-Y.
,
Park
,
J.-C.
,
Um
,
Y.-J.
,
Jung
,
U.-W.
,
Kim
,
C.-S.
,
Cho
,
K.-S.
, and
Choi
,
S.-H.
, 2010, “
Spontaneous Healing Capacity of Rabbit Cranial Defects of Various Sizes
,”
J. Periodontal Implant Sci.
,
40
(
4
), pp.
180
187
.
32.
Baker
,
M. I.
,
Eberhardt
,
A. W.
,
Martin
,
D. M.
,
McGwin
,
G.
, and
Lemons
,
J. E.
, 2010, “
Bone Properties Surrounding Hydroxyapatite-Coated Custom Osseous Integrated Dental Implants
,”
J. Biomed. Mater. Res.
, Part B: Apple Biomater.,
95B
(
1
), pp.
218
224
.
33.
Maimoun
,
L.
,
Brennan
,
T. C.
,
Badoud
,
I.
,
Dubois-Ferriere
,
V.
,
Rizzoli
,
R.
, and
Ammann
,
P.
, 2010, “
Strontium Ranelate Improves Implant Osseointegration
,”
Bone
,
46
(
5
), pp.
1436
1441
.
34.
Ballarre
,
J.
,
Manjubala
,
I.
,
Schreiner
,
W. H.
,
Orellano
,
J. C.
,
Fratzl
,
P.
, and
Cere
,
S.
, 2009, “
Improving the Osteointegration and Bone-Implant Interface by Incorporation of Bioactive Particles in Sol-Gel Coatings of Stainless Steel Implants
,”
Acta Biomater.
,
6
(
4
), pp.
1601
1609
.
35.
Viceconti
,
M.
,
Monti
,
L.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
, and
Toni
,
A.
, 2001, “
Even a Thin Layer of Soft Tissue May Compromise the Primary Stability of Cementless Hip Stems
,”
Clin. Biomech. (Bristol, Avon)
,
16
(
9
), pp.
765
775
.
36.
Viceconti
,
M.
,
Brusi
,
G.
,
Pancanti
,
A.
, and
Cristofolini
,
L.
, 2006, “
Primary Stability of an Anatomical Cementless Hip Stem: A Statistical Analysis
J. Biomech.
,
39
(
7
), pp.
1169
1179
.
37.
Chevallier
,
N.
,
Anagnostou
,
F.
,
Zilber
,
S.
,
Bodivit
,
G.
,
Maurin
,
S.
,
Barrault
,
A.
,
Bierling
,
P.
,
Hernigou
,
P.
,
Layrolle
,
P.
, and
Rouard
,
H.
, 2009, “
Osteoblastic Differentiation of Human Mesenchymal Stem Cells With Platelet Lysate
,”
Biomaterials
,
31
(
2
), pp.
270
278
.
38.
Soffer
,
E.
,
Ouhayoun
,
J. P.
,
Meunier
,
A.
, and
Anagnostou
,
F.
, 2006, “
Effects of Autologous Platelet Lysates on Ceramic Particle Resorption and New Bone Formation in Critical Size Defects: The Role of Anatomical Sites
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
79B
(
1
), pp.
86
94
.
39.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
40.
Oyen
,
M. L.
, 2006, “
Nanoindentation Hardness of Mineralized Tissues
,”
J. Biomech.
,
39
(
14
), pp.
2699
2702
.
41.
Sakai
,
M.
, 1999, “
The Meyer Hardness: A Measure for Plasticity?
,”
J. Mater. Res.
,
14
(
9
), pp.
3630
3639
.
42.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 2004, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.
43.
Rupin
,
F.
,
Saïed
,
A.
,
Dalmas
,
D.
,
Peyrin
,
F.
,
Haupert
,
S.
,
Raum
,
K.
,
Barthel
,
E.
,
Boivin
,
G.
, and
Laugier
,
P.
, 2009, “
Assessment of Microelastic Properties of Bone Using Scanning Acoustic Microscopy: A Face-to-Face Comparison With Nanoindentation
,”
J. Clin. Densitom.
,
12
(
1
), p.
126
.
44.
Brennan
,
O.
,
Kennedy
,
O. D.
,
Lee
,
T. C.
,
Rackard
,
S. M.
, and
O’Brien
,
F. J.
, 2009, “
Biomechanical Properties Across Trabeculae From the Proximal Femur of Normal and Ovariectomised Sheep
,”
J. Biomech.
,
42
(
4
), pp.
498
503
.
45.
Li
,
X.
, and
Bhushan
,
B.
, 2002, “
A Review of Nanoindentation Continuous Stiffness Measurement Technique and its Applications Next Term
,”
Mater. Charact.
,
48
(
1
), pp.
11
36
.
46.
Shen
,
L.
,
Wang
,
L.
,
Liu
,
T. X.
, and
He
,
C. B.
, 2006, “
Nanoindentation and Morphological Studies of Epoxy Nanocomposites
,”
Macromol. Mater. Eng.
,
291
(
11
), pp.
1358
1366
.
47.
Wang
,
X.
,
Allen
,
M.
,
Burr
,
D.
,
Lavernia
,
E.
,
Jeremić
,
B.
, and
Fyhrie
,
DP
, 2008, “
Identification of Material Parameters Based on Mohr-Coulomb Failure Criterion for Bisphosphonate Treated Canine Vertebral Cancellous Bone
,”
Bone
,
43
(
4
), pp.
775
780
.
48.
Manjubala
,
I.
,
Liu
,
Y.
,
Epari
,
D. R.
,
Roschger
,
P.
,
Schell
,
H.
,
Fratzl
,
P.
, and
Duda
,
G. N.
, 2009, “
Spatial and Temporal Variations of Mechanical Properties and Mineral Content of the External Callus During Bone Healing
,”
Bone
,
45
(
2
), pp.
185
192
.
49.
Leong
,
P. L.
, and
Morgan
,
E. F.
, 2008, “
Measurement of Fracture Callus Material Properties via Nanoindentation
,”
Acta Biomater.
,
4
(
5
), pp.
1569
1575
.
50.
Leong
,
P. L.
, and
Morgan
,
E. F.
, 2009, “
Correlation Between Nanoindentation Modulus and Mineral Density in Fracture Callus Tissues
,”
Proceedings of the ASME Summer Bioengineering Conference 2008, Parts A and B
,
ASME
,
New York
, pp.
675
676
.
51.
Ishimoto
,
T.
,
Nakano
,
T.
,
Yamamoto
,
M.
, and
Tabata
,
Y.
, 2011, “
Biomechanical Evaluation of Regenerating Long Bone by Nanoindentation
,”
J. Mater. Sci.: Mater. Med.
,
22
(
4
), pp.
969
976
.
52.
Artzi
,
Z.
,
Givol
,
N.
,
Rohrer
,
M. D.
,
Nemcovsky
,
C. E.
,
Prasad
,
H. S.
, and
Tal
,
H.
, 2003, “
Qualitative and Quantitative Expression of Bovine Bone Mineral in Experimental Bone Defects. Part 2: Morphometric Analysis
,”
J. Periodontol.
,
74
(
8
), pp.
1153
1160
.
53.
Sansalone
,
V.
,
Naili
,
S.
,
Bousson
,
V.
,
Bergot
,
C.
,
Peyrin
,
F.
,
Zarka
,
J.
,
Laredo
,
J. D.
, and
Haiat
,
G.
, 2010, “
Determination of the Heterogeneous Anisotropic Elastic Properties of Human Femoral Bone: From Nanoscopic to Organ Scale
,”
J. Biomech.
,
43
(
10
), pp.
1857
1863
.
54.
Hodgskinson
,
R.
,
Currey
,
J. D.
, and
Evans
,
G. P.
, 1989, “
Hardness, an Indicator of the Mechanical Competence of Cancellous Bone
,”
J. Orthop. Res.
,
7
(
5
), pp.
754
758
.
55.
Sansalone
,
V.
,
Bousson
,
V.
,
Naili
,
S.
,
Bergot
,
C.
,
Peyrin
,
F.
,
Laredo
,
J. D.
, and
Haïat
,
G.
, 2012, “
Anatomical Distribution of the Degree of Mineralization of Bone Tissue in Human Femoral Neck: Impact on Biomechanical Properties
,” Bone, (in press).
56.
Matos
,
M. A.
,
Araujo
,
F. P.
, and
Paixao
,
F. B.
, 2008, “
Histomorphometric Evaluation of Bone Healing in Rabbit Fibular Osteotomy Model Without Fixation
,”
J. Orthop. Surg.
,
3
, p.
4
.
57.
Wolfram
,
U.
,
Wilke
,
H. J.
, and
Zysset
,
P. K.
, 2010, “
Rehydration of Vertebral Trabecular Bone: Influences on its Anisotropy, its Stiffness and the Indentation Work With a View to Age, Gender and Vertebral Level
,”
Bone
,
46
(
2
), pp.
348
354
.
58.
Fratzl-Zelman
,
N.
,
Roschger
,
P.
,
Gourrier
,
A.
,
Weber
,
M.
,
Misof
,
B. M.
,
Loveridge
,
N.
,
Reeve
,
J.
,
Klaushofer
,
K.
, and
Fratzl
,
P.
, 2009, “
Combination of Nanoindentation and Quantitative Backscattered Electron Imaging Revealed Altered Bone Material Properties Associated With Femoral Neck Fragility
,”
Calcif. Tissue Int.
,
85
, pp.
335
343
.
You do not currently have access to this content.