Modeling of the cerebrospinal fluid (CSF) system in the spine is strongly motivated by the need to understand the origins of pathological conditions such as the emergence and growth of fluid-filled cysts in the spinal cord. In this study, a one-dimensional (1D) approximation for the flow in elastic conduits was used to formulate a model of the spinal CSF compartment. The modeling was based around a coaxial geometry in which the inner elastic cylinder represented the spinal cord, middle elastic tube represented the dura, and the outermost tube represented the vertebral column. The fluid-filled annuli between the cord and dura, and the dura and vertebral column, represented the subarachnoid and epidural spaces, respectively. The system of governing equations was constructed by applying a 1D form of mass and momentum conservation to all segments of the model. The developed 1D model was used to simulate CSF pulse excited by pressure disturbances in the subarachnoid and epidural spaces. The results were compared to those obtained from an equivalent two-dimensional finite element (FE) model which was implemented using a commercial software package. The analysis of linearized governing equations revealed the existence of three types of waves, of which the two slower waves can be clearly related to the wave modes identified in previous similar studies. The third, much faster, wave emanates directly from the vertebral column and has little effect on the deformation of the spinal cord. The results obtained from the 1D model and its FE counterpart were found to be in good general agreement even when sharp spatial gradients of the spinal cord stiffness were included; both models predicted large radial displacements of the cord at the location of an initial cyst. This study suggests that 1D modeling, which is computationally inexpensive and amenable to coupling with the models of the cranial CSF system, should be a useful approach for the analysis of some aspects of the CSF dynamics in the spine. The simulation of the CSF pulse excited by a pressure disturbance in the epidural space, points to the possibility that regions of the spinal cord with abnormally low stiffness may be prone to experiencing large strains due to coughing and sneezing.

References

References
1.
Wakeland
,
W.
, and
Goldstein
,
B.
, 2008, “
A Review of Physiological Simulation Models of Intracranial Pressure Dynamics
,”
Comput. Biol. Med.
,
38
(
9
), pp.
1024
1041
.
2.
Wirth
,
B.
, and
Sobey
,
I.
, 2009, “
Analytic Solution During an Infusion Test of the Linear Unsteady Poroelastic Equations in a Spherically Symmetric Model of the Brain
,”
Math. Med. Biol.
,
26
(
1
), pp.
25
61
.
3.
Ursino
,
M.
, and
Giannessi
,
M.
, 2010, “
A Model of Cerebrovascular Reactivity Including the Circle of Willis and Cortical Anastomoses
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
955
974
.
4.
Takemae
,
T.
,
Kosugi
,
Y.
,
Ikebe
,
J.
,
Kumagai
,
Y.
,
Matsuyama
,
K.
, and
Saito
,
H.
, 1987, “
A Simulation Study of Intracranial Pressure Increment Using an Electrical Circuit Model of Cerebral Circulation
,”
IEEE Trans. Biomed. Eng.
,
34
(
12
), pp.
958
962
.
5.
Marmarou
,
A.
,
Shulman
,
K.
, and
Rosende
,
R. M.
, 1978, “
A Nonlinear Analysis of the Cerebrospinal Fluid System and Intracranial Pressure Dynamics
,”
J. Neurosurg.
,
48
(
3
), pp.
332
344
.
6.
Cirovic
,
S.
,
Walsh
,
C.
, and
Fraser
,
W. D.
, 2003, “
Mathematical Study of the Role of Non-Linear Venous Compliance in the Cranial Volume-Pressure Test
,”
Med. Biol. Eng. Comput.
,
41
(
5
), pp.
579
588
.
7.
Ambarki
,
K.
,
Baledent
,
O.
,
Kongolo
,
G.
,
Bouzerar
,
R.
,
Fall
,
S.
, and
Meyer
,
M. E.
, 2007, “
A New Lumped-Parameter Model of Cerebrospinal Hydrodynamics During the Cardiac Cycle in Healthy Volunteers
,”
IEEE Trans. Biomed. Eng.
,
54
(
3
), pp.
483
491
.
8.
Martin
,
B. A.
, and
Loth
,
F.
, 2009, “
The Influence of Coughing on Cerebrospinal Fluid Pressure in an In Vitro Syringomyelia Model With Spinal Subarachnoid Space Stenosis
,”
Cerebrospinal Fluid Res.
,
6
, pp.
17
.
9.
Martin
,
B. A.
,
Labuda
,
R.
,
Royston
,
T. J.
,
Oshinski
,
J. N.
,
Iskandar
,
B.
, and
Loth
,
F.
, 2010, “
Spinal Subarachnoid Space Pressure Measurements in an In Vitro Spinal Stenosis Model: Implications on Syringomyelia Theories
,”
J. Biomech. Eng.
,
132
(
11
), p.
111007
.
10.
Martin
,
B. A.
,
Kalata
,
W.
,
Loth
,
F.
,
Royston
,
T. J.
, and
Oshinski
,
J. N.
, 2005, “
Syringomyelia Hydrodynamics: An In Vitro Study Based on In Vivo Measurements
,”
J. Biomech. Eng.
,
127
(
7
), pp.
1110
1120
.
11.
Elliott
,
N. S.
,
Lockerby
,
D. A.
, and
Brodbelt
,
A. R.
, 2010, “
A Lumped-Parameter Model of the Cerebrospinal System for Investigating Arterial-Driven Flow in Posttraumatic Syringomyelia
,”
Med. Eng. Phys.
,
33
(
7
), pp.
874
882
.
12.
Cirovic
,
S.
, 2009, “
A Coaxial Tube Model of the Cerebrospinal Fluid Pulse Propagation in the Spinal Column
,”
J. Biomech. Eng.
,
131
(
2
), p.
021008
.
13.
Chang
,
H. S.
, and
Nakagawa
,
H.
, 2004, “
Theoretical Analysis of the Pathophysiology of Syringomyelia Associated With Adhesive Arachnoiditis
,”
J. Neurol., Neurosurg. Psychiatry
,
75
(
5
), pp.
754
757
.
14.
Chang
,
H. S.
, and
Nakagawa
,
H.
, 2003, “
Hypothesis on the Pathophysiology of Syringomyelia Based on Simulation of Cerebrospinal Fluid Dynamics
,”
J. Neurol. Neurosurg. Psychiatry
,
74
(
3
), pp.
344
347
.
15.
Carpenter
,
P. W.
,
Berkouk
,
K.
, and
Lucey
,
A. D.
, 2003, “
Pressure Wave Propagation in Fluid-Filled Co-Axial Elastic Tubes. Part 2: Mechanisms for the Pathogenesis of Syringomyelia
,”
J. Biomech. Eng.
,
125
(
6
), pp.
857
863
.
16.
Bertram
,
C. D.
,
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
, 2005, “
The Origins of Syringomyelia: Numerical Models of Fluid/Structure Interactions in the Spinal Cord
,”
J. Biomech. Eng.
,
127
(
7
), pp.
1099
1109
.
17.
Bertram
,
C. D.
,
Bilston
,
L. E.
, and
Stoodley
,
M. A.
, 2008, “
Tensile Radial Stress in the Spinal Cord Related to Arachnoiditis or Tethering: A Numerical Model
,”
Med. Biol. Eng. Comput.
,
46
(
7
), pp.
701
707
.
18.
Bertram
,
C. D.
, 2010, “
Evaluation By Fluid/Structure-Interaction Spinal-Cord Simulation of the Effects of Subarachnoid-Space Stenosis on an Adjacent Syrinx
,”
J. Biomech. Eng.
,
132
(
6
), p.
061009
.
19.
Bertram
,
C. D.
, 2009, “
A Numerical Investigation of Waves Propagating in the Spinal Cord and Subarachnoid Space in the Presence of a Syrinx
,”
J. Fluids Struct.
,
25
, pp.
1189
1205
.
20.
Berkouk
,
K.
,
Carpenter
,
P. W.
, and
Lucey
,
A. D.
, 2003, “
Pressure Wave Propagation in Fluid-Filled Co-Axial Elastic Tubes. Part 1: Basic Theory
,”
J. Biomech. Eng.
,
125
(
6
), pp.
852
856
.
21.
Williams
,
B.
, 1980, “
On the Pathogenesis of Syringomyelia: A Review
,”
J. R. Soc. Med.
,
73
(
11
), pp.
798
806
.
22.
Levine
,
D. N.
, 2004, “
The Pathogenesis of Syringomyelia Associated With Lesions at the Foramen Magnum: A Critical Review of Existing Theories and Proposal of a New Hypothesis
,”
J. Neurol. Sci.
,
220
(
1–2
), pp.
3
21
.
23.
Oldfield
,
E. H.
,
Muraszko
,
K.
,
Shawker
,
T. H.
, and
Patronas
,
N. J.
, 1994, “
Pathophysiology of Syringomyelia Associated With Chiari I Malformation of the Cerebellar Tonsils. Implications for Diagnosis and Treatment
,”
J. Neurosurg.
,
80
(
1
), pp.
3
15
.
24.
Heiss
,
J. D.
,
Patronas
,
N.
,
Devroom
,
H. L.
,
Shawker
,
T.
,
Ennis
,
R.
,
Kammerer
,
W.
,
Eidsath
,
A.
,
Talbot
,
T.
,
Morris
,
J.
,
Eskioglu
,
E.
, and
Oldfield
,
E. H.
, 1999, “
Elucidating the Pathophysiology of Syringomyelia
,”
J. Neurosurg.
,
91
(
4
), pp.
553
562
.
25.
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
, 2003, “
Post-Traumatic Syringomyelia: A Review
,”
J. Clin. Neurosci.
,
10
(
4
), pp.
401
408
.
26.
Williams
,
B.
, 1981, “
Simultaneous Cerebral and Spinal Fluid Pressure Recordings. I. Technique, Physiology, and Normal Results
,”
Acta Neurochir. (Wien)
,
58
(
3–4
), pp.
167
185
.
27.
Williams
,
B.
, 1976, “
Cerebrospinal Fluid Pressure Changes in Response to Coughing
,”
Brain
,
99
(
2
), pp.
331
46
.
28.
Zagzoule
,
M.
, and
Marc-Vergnes
,
J. P.
, 1986, “
A Global Mathematical Model of the Cerebral Circulation in Man
,”
J. Biomech.
,
19
(
12
), pp.
1015
1022
.
29.
Sheng
,
C.
,
Sarwal
,
S. N.
,
Watts
,
K. C.
, and
Marble
,
A. E.
, 1995, “
Computational Simulation of Blood Flow in Human Systemic Circulation Incorporating an External Force Field
,”
Med. Biol. Eng. Comput.
,
33
(
1
), pp.
8
17
.
30.
Elad
,
D.
,
Katz
,
D.
,
Kimmel
,
E.
, and
Einav
,
S.
, 1991, “
Numerical Schemes for Unsteady Fluid Flow Through Collapsible Tubes
,”
J. Biomed. Eng.
,
13
(
1
), pp.
10
18
.
31.
Brook
,
B. S.
, and
Pedley
,
T. J.
, 2002, “
A Model for Time-Dependent Flow in (Giraffe Jugular) Veins: Uniform Tube Properties
,”
J. Biomech.
,
35
(
1
), pp.
95
107
.
32.
Nickalls
,
R. W.
, and
Kokri
,
M. S.
, 1986, “
The Width of the Posterior Epidural Space in Obstetric Patients
,”
Anaesthesia
,
41
(
4
), pp.
432
433
.
33.
Lee
,
R. A.
,
Van Zundert
,
A. A.
,
Breedveld
,
P.
,
Wondergem
,
J. H.
,
Peek
,
D.
, and
Wieringa
,
P. A.
, 2007, “
The Anatomy of the Thoracic Spinal Canal Investigated With Magnetic Resonance Imaging (MRI)
,”
Acta Anaesthesiol. Belg.
,
58
(
3
), pp.
163
167
.
34.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
, 2001, “
Hydrodynamic Modeling of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
J. Biomech. Eng.
,
123
(
1
), pp.
71
79
.
35.
Newell
,
R. L.
, 1999, “
The Spinal Epidural Space
,”
Clin. Anat.
,
12
(
5
), pp.
375
379
.
36.
Leveque
,
R. J.
, 2002, “
Characteristics and Rieman Problems for Linear Hyperbolic Equations
,”
Finite Volume Methods for Hyperbolic Problems
,
Cambridge University Press
,
Cambridge
Chapter 3.
37.
Shaffer
,
N.
,
Martin
,
B.
, and
Loth
,
F.
, 2011, “
Cerebrospinal Fluid Hydrodynamics in Type I Chiari Malformation
,”
Neurol. Res.
,
33
(
3
), pp.
247
260
.
38.
Pinna
,
G.
,
Alessandrini
,
F.
,
Alfieri
,
A.
,
Rossi
,
M.
, and
Bricolo
,
A.
, 2000, “
Cerebrospinal Fluid Flow Dynamics Study in Chiari I Malformation: Implications for Syrinx Formation
,”
Neurosurg. Focus
,
8
(
3
), p.
E3
.
39.
Fischbein
,
N. J.
,
Dillon
,
W. P.
,
Cobbs
,
C.
, and
Weinstein
,
P. R.
, 2000, “
The ‘Presyrinx’ State: Is there a Reversible Myelopathic Condition That May Precede Syringomyelia?
,”
Neurosurg. Focus
,
8
(
3
), p.
E4
.
40.
Milhorat
,
T. H.
,
Kotzen
,
R. M.
, and
Anzil
,
A. P.
, 1994, “
Stenosis of Central Canal of Spinal Cord in Man: Incidence and Pathological Findings in 232 Autopsy Cases
,”
J Neurosurg
,
80
(
4
), pp.
716
722
.
41.
Cirovic
,
S.
, and
Kim
,
M.
, 2010, “
One-Dimensional Model for Cerebrospinal Fluid Pulse in the Spinal Column
,” 6th World Congress of Biomechanics (WCB 2010), August 1-6 Singapore, IFMBE Proceedings.
J. C. H.
Goh
,
et al.
, eds.,
Singapore
,
31
, pp.
366
369
.
42.
Cirovic
,
S.
,
Walsh
,
C.
, and
Fraser
,
W. D.
, 2002, “
Wave Propagation in a System of Coaxial Tubes Filled With Incompressible Media: A Model of Pulse Transmission in the Intracranial Arteries
,”
J. Fluids Struct.
,
16
(
8
), pp.
1029
1049
.
43.
Kalata
,
W.
,
Martin
,
B. A.
,
Oshinski
,
J. N.
,
Jerosch-Herold
,
M.
,
Royston
,
T. J.
, and
Loth
,
F.
, 2009, “
Mr Measurement of Cerebrospinal Fluid Velocity Wave Speed in the Spinal Canal
,”
IEEE Trans. Biomed. Eng.
,
56
(
6
), pp.
1765
1768
.
44.
Groen
,
R. J.
,
Groenewegen
,
H. J.
,
Van Alphen
,
H. A.
, and
Hoogland
,
P. V.
, 1997, “
Morphology of the Human Internal Vertebral Venous Plexus: A Cadaver Study After Intravenous Araldite Cy 221 Injection
,”
Anat. Rec.
,
249
(
2
), pp.
285
294
.
45.
Batson
,
O. V.
, 1967, “
The Vertebral System of Veins as a Means for Cancer Dissemination
,”
Prog. Clin. Cancer
,
3
, pp.
1
18
.
46.
Roldan
,
A.
,
Wieben
,
O.
,
Haughton
,
V.
,
Osswald
,
T.
, and
Chesler
,
N.
, 2009, “
Characterization of Csf Hydrodynamics in the Presence and Absence of Tonsillar Ectopia by Means of Computational Flow Analysis
,”
AJNR Am. J. Neuroradiol.
,
30
(
5
), pp.
941
946
.
You do not currently have access to this content.