The heterogeneous composition and mechanical properties of the supraspinatus tendon offer an opportunity for studying the structure-function relationships of fibrous musculoskeletal connective tissues. Previous uniaxial testing has demonstrated a correlation between the collagen fiber angle distribution and tendon mechanics in response to tensile loading both parallel and transverse to the tendon longitudinal axis. However, the planar mechanics of the supraspinatus tendon may be more appropriately characterized through biaxial tensile testing, which avoids the limitation of nonphysiologic traction-free boundary conditions present during uniaxial testing. Combined with a structural constitutive model, biaxial testing can help identify the specific structural mechanisms underlying the tendon’s two-dimensional mechanical behavior. Therefore, the objective of this study was to evaluate the contribution of collagen fiber organization to the planar tensile mechanics of the human supraspinatus tendon by fitting biaxial tensile data with a structural constitutive model that incorporates a sample-specific angular distribution of nonlinear fibers. Regional samples were tested under several biaxial boundary conditions while simultaneously measuring the collagen fiber orientations via polarized light imaging. The histograms of fiber angles were fit with a von Mises probability distribution and input into a hyperelastic constitutive model incorporating the contributions of the uncrimped fibers. Samples with a wide fiber angle distribution produced greater transverse stresses than more highly aligned samples. The structural model fit the longitudinal stresses well (median R2 ≥ 0.96) and was validated by successfully predicting the stress response to a mechanical protocol not used for parameter estimation. The transverse stresses were fit less well with greater errors observed for less aligned samples. Sensitivity analyses and relatively affine fiber kinematics suggest that these errors are not due to inaccuracies in measuring the collagen fiber organization. More likely, additional strain energy terms representing fiber-fiber interactions are necessary to provide a closer approximation of the transverse stresses. Nevertheless, this approach demonstrated that the longitudinal tensile mechanics of the supraspinatus tendon are primarily dependent on the moduli, crimp, and angular distribution of its collagen fibers. These results add to the existing knowledge of structure-function relationships in fibrous musculoskeletal tissue, which is valuable for understanding the etiology of degenerative disease, developing effective tissue engineering design strategies, and predicting outcomes of tissue repair.

References

References
1.
Buckwalter
,
J.
,
Einhorn
,
T.
, and
Simon
,
S.
, 2000,
Orthopaedic Basic Science: Biology and Biomechanics of the Musculoskeletal System
,
American Academy of Orthopaedic Surgeons
,
Rosemont, IL
, pp.
731
827
.
2.
Riley
,
G. P.
,
Harrall
,
R. L.
,
Constant
,
C. R.
,
Chard
,
M. D.
,
Cawston
,
T. E.
, and
Hazleman
,
B. L.
, 1994, “
Glycosaminoglycans of Human Rotator Cuff Tendons: Changes with Age and in Chronic Rotator Cuff Tendinitis
,”
Ann. Rheum. Dis.
,
53
(
6
), pp.
367
376
.
3.
Riley
,
G. P.
,
Harrall
,
R. L.
,
Constant
,
C. R.
,
Chard
,
M. D.
,
Cawston
,
T. E.
, and
Hazleman
,
B. L.
, 1994, “
Tendon Degeneration and Chronic Shoulder Pain: Changes in the Collagen Composition of the Human Rotator Cuff Tendons in Rotator Cuff Tendinitis
,”
Ann. Rheum. Dis.
,
53
(
6
), pp.
359
366
.
4.
Clark
,
J. M.
and
Harryman
,
D. T.
, 1992, “
Tendons, Ligaments, and Capsule of the Rotator Cuff. Gross and Microscopic Anatomy
,”
J. Bone Joint Surg., Am. Vol.
,
74
(
5
), pp.
713
725
.
5.
Gohlke
,
F.
,
Essigkrug
,
B.
, and
Schmitz
,
F.
, 1994, “
The Pattern of the Collagen Fiber Bundles of the Capsule of the Glenohumeral Joint
,”
J. Shoulder Elbow Surg.
,
3
(
3
), pp.
111
128
.
6.
Nakajima
,
T.
,
Rokuuma
,
N.
,
Hamada
,
K.
,
Tomatsu
,
T.
, and
Fukuda
,
H.
, 1994, “
Histologic and Biomechanical Characteristics of the Supraspinatus Tendon: Reference to Rotator Cuff Tearing
,”
J. Shoulder Elbow Surg.
,
3
(
2
), pp.
79
87
.
7.
Itoi
,
E.
,
Berglund
,
L. J.
,
Grabowski
,
J. J.
,
Schultz
,
F. M.
,
Growney
,
E. S.
,
Morrey
,
B. F.
, and
An
,
K. N.
, 1995, “
Tensile Properties of the Supraspinatus Tendon
,”
J. Orthop. Res.
,
13
(
4
), pp.
578
584
.
8.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
, 2009, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon under Longitudinal Tensile Loading
,”
J. Orthop. Res.
,
27
(
12
), pp.
1596
1602
.
9.
Lee
,
S. B.
,
Nakajima
,
T.
,
Luo
,
Z. P.
,
Zobitz
,
M. E.
,
Chang
,
Y. W.
, and
An
,
K. N.
, 2000, “
The Bursal and Articular Sides of the Supraspinatus Tendon Have a Different Compressive Stiffness
,”
Clin. Biomech.
,
15
(
4
), pp.
241
247
.
10.
Bey
,
M. J.
,
Song
,
H. K.
,
Wehrli
,
F. W.
, and
Soslowsky
,
L. J.
, 2002, “
Intratendinous Strain Fields of the Intact Supraspinatus Tendon: The Effect of Glenohumeral Joint Position and Tendon Region
,”
J. Orthop. Res.
,
20
(
4
), pp.
869
874
.
11.
Flatow
,
E. L.
,
Soslowsky
,
L. J.
,
Ticker
,
J. B.
,
Pawluk
,
R. J.
,
Hepler
,
M.
,
Ark
,
J.
,
Mow
,
V. C.
, and
Bigliani
,
L. U.
, 1994, “
Excursion of the Rotator Cuff under the Acromion. Patterns of Subacromial Contact
,”
Am. J. Sports Med.
,
22
(
6
), pp.
779
788
.
12.
Hughes
,
P. C.
,
Green
,
R. A.
, and
Taylor
,
N. F.
, 2012, “
Measurement of Subacromial Impingement of the Rotator Cuff
,”
J. Sci. Med. Sport
,
15
(1)
, pp.
2
7
.
13.
Luo
,
Z. P.
,
Hsu
,
H. C.
,
Grabowski
,
J. J.
,
Morrey
,
B. F.
, and
An
,
K. N.
, 1998, “
Mechanical Environment Associated with Rotator Cuff Tears
,”
J. Shoulder Elbow Surg.
,
7
(
6
), pp.
616
620
.
14.
Nakajima
,
T.
,
Hughes
,
R. E.
, and
An
,
K. N.
, 2004, “
Effects of Glenohumeral Rotations and Translations on Supraspinatus Tendon Morphology
,”
Clin. Biomech.
,
19
(
6
), pp.
579
85
.
15.
Wakabayashi
,
I.
,
Itoi
,
E.
,
Sano
,
H.
,
Shibuya
,
Y.
,
Sashi
,
R.
,
Minagawa
,
H.
, and
Kobayashi
,
M.
, 2003, “
Mechanical Environment of the Supraspinatus Tendon: A Two-Dimensional Finite Element Model Analysis
,”
J. Shoulder Elbow Surg.
,
12
(
6
), pp.
612
617
.
16.
Andarawis-Puri
,
N.
,
Ricchetti
,
E. T.
, and
Soslowsky
,
L. J.
, 2009, “
Interaction Between the Supraspinatus and Infraspinatus Tendons: Effect of Anterior Supraspinatus Tendon Full-Thickness Tears on Infraspinatus Tendon Strain
,”
Am. J. Sports Med.
,
37
(
9
), pp.
1831
1839
.
17.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
, 2010, “
Tensile Properties and Fiber Alignment of Human Supraspinatus Tendon in the Transverse Direction Demonstrate Inhomogeneity, Nonlinearity, and Regional Isotropy
,”
J. Biomech.
,
43
(
4
), pp.
727
732
.
18.
Adams
,
M. A.
and
Green
,
T. P.
, 1993, “
Tensile Properties of the Annulus Fibrosus. I. The Contribution of Fibre-Matrix Interactions to Tensile Stiffness and Strength
,”
Eur. Spine J.
,
2
(
4
), pp.
203
208
.
19.
O’Connell
,
G. D.
,
Sen
,
S.
, and
Elliott
,
D. M.
, 2012, “
Human Annulus Fibrosus Material Properties from Biaxial Testing and Constitutive Modeling Are Altered with Degeneration
,”
Biomech. Model Mechanobiol.
, ▪.
20.
Billiar
,
K. L.
and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp-Part I: Experimental Results
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
23
30
.
21.
Choi
,
H. S.
and
Vito
,
R. P.
, 1990, “
Two-Dimensional Stress-Strain Relationship for Canine Pericardium
,”
ASME J. Biomech Eng.
,
112
(
2
), pp.
153
159
.
22.
Debes
,
J. C.
and
Fung
,
Y. C.
, 1995, “
Biaxial Mechanics of Excised Canine Pulmonary Arteries
,”
Am. J. Physiol.
,
269
, pp.
H433
-
H442
.
23.
Demer
,
L. L.
and
Yin
,
F. C.
, 1983, “
Passive Biaxial Mechanical Properties of Isolated Canine Myocardium
,”
J. Physiol.
,
339
, pp.
615
630
.
24.
Lanir
,
Y.
and
Fung
,
Y. C.
, 1974, “
Two-Dimensional Mechanical Properties of Rabbit Skin. II. Experimental Results
,”
J. Biomech.
,
7
(
2
), pp.
171
182
.
25.
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
,
61
(
1-3
), pp.
199
246
.
26.
Chew
,
P. H.
,
Yin
,
F. C.
, and
Zeger
,
S. L.
, 1986, “
Biaxial Stress-Strain Properties of Canine Pericardium
,”
J. Mol. Cell. Cardiol.
,
18
(
6
), pp.
567
578
.
27.
Sacks
,
M. S.
and
Chuong
,
C. J.
, 1998, “
Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
,
26
(
5
), pp.
892
902
.
28.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.
29.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.
30.
Lake
,
S. P.
,
Cortes
,
D. H.
,
Kadlowec
,
J. A.
,
Soslowsky
,
L. J.
, and
Elliott
,
D. M.
, 2012, “
Evaluation of Affine Fiber Kinematics in Human Supraspinatus Tendon Using Quantitative Projection Plot Analysis
,”
Biomech. Model Mechanobiol.
,
11
(1-2)
, pp.
197
205
.
31.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
, 2003, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
726
731
.
32.
Nash
,
J. E.
and
Sutcliffe
,
J. V.
, 1970, “
River Flow Forecasting through Conceptual Models: Part I. A Discussion of Principles
,”
J. Hydrol.
,
10
(
3
), pp.
282
290
.
33.
Moriasi
,
D. N.
,
Arnold
,
J. G.
,
Van Liew
,
M. W.
,
Bingner
,
R. L.
,
Harmel
,
R. D.
, and
Veith
,
T. L.
, 2007, “
Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations
,”
Trans. ASABE
,
50
(
3
), pp.
885
900
.
34.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
, 2009, “
Image-Based Biomechanics of Collagen-Based Tissue Equivalents Multiscale Models Compared to Fiber Alignment Predicted by Polarimetric Imaging
,”
IEEE Eng. Med. Biol. Mag.
,
28
(
3
), pp.
10
18
.
35.
An
,
K. N.
,
Sun
,
Y. L.
, and
Luo
,
Z. P.
, 2004, “
Flexibility of Type I Collagen and Mechanical Property of Connective Tissue
,”
Biorheology
,
41
(
3-4
), pp.
239
246
.
36.
Hansen
,
P.
,
Hassenkam
,
T.
,
Svensson
,
R. B.
,
Aagaard
,
P.
,
Trappe
,
T.
,
Haraldsson
,
B. T.
,
Kjaer
,
M.
, and
Magnusson
,
P.
, 2009, “
Glutaraldehyde Cross-Linking of Tendon-Mechanical Effects at the Level of the Tendon Fascicle and Fibril
,”
Connect. Tissue Res.
,
50
(
4
), pp.
211
222
.
37.
Sasaki
,
N.
and
Odajima
,
S.
, 1996, “
Elongation Mechanism of Collagen Fibrils and Force-Strain Relations of Tendon at Each Level of Structural Hierarchy
,”
J. Biomech.
,
29
(
9
), pp.
1131
1136
.
38.
Svensson
,
R. B.
,
Hassenkam
,
T.
,
Grant
,
C. A.
, and
Magnusson
,
S. P.
, 2010, “
Tensile Properties of Human Collagen Fibrils and Fascicles Are Insensitive to Environmental Salts
,”
Biophys. J.
,
99
(
12
), pp.
4020
4027
.
39.
van der Rijt
,
J. A.
,
van der Werf
,
K. O.
,
Bennink
,
M. L.
,
Dijkstra
,
P. J.
, and
Feijen
,
J.
, 2006, “
Micromechanical Testing of Individual Collagen Fibrils
,”
Macromol. Biosci.
,
6
(
9
), pp.
697
702
.
40.
Wenger
,
M. P.
and
Mesquida
,
P.
, 2011, “
The Nanobeambalance: A Passive, Tensile-Test Device for the Atomic Force Microscope
,”
Rev. Sci. Instrum.
,
82
(
5
), pp.
053908
.
41.
Diamant
,
J.
,
Keller
,
A.
,
Baer
,
E.
,
Litt
,
M.
, and
Arridge
,
R. G.
, 1972, “
Collagen: Ultrastructure and Its Relation to Mechanical Properties as a Function of Ageing
,”
Proc. R. Soc. London, Ser. B
,
180
(
60
), pp.
293
315
.
42.
Hansen
,
K. A.
,
Weiss
,
J. A.
, and
Barton
,
J. K.
, 2002, “
Recruitment of Tendon Crimp with Applied Tensile Strain
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
72
77
.
43.
Houssen
,
Y. G.
,
Gusachenko
,
I.
,
Schanne-Klein
,
M. C.
, and
Allain
,
J. M.
, 2011, “
Monitoring Micrometer-Scale Collagen Organization in Rat-Tail Tendon Upon Mechanical Strain Using Second Harmonic Microscopy
,”
J. Biomech.
,
44
(
11
), pp.
2047
2052
.
You do not currently have access to this content.