Using either the principle of minimum energy or constant shear stress, a relation can be derived that predicts the diameters of branching vessels at a bifurcation. This relation, known as Murray's Law, has been shown to predict vessel diameters in a variety of cardiovascular systems from adult humans to developing chicks. The goal of this study is to investigate Murray's Law in vessels from mice that are haploinsufficient for the elastin protein (Eln+/−). Elastin is one of the major proteins in the blood vessel wall and is organized in concentric rings, known as lamellae, with smooth muscle cells (SMCs) around the vessel lumen. Eln+/− mice have an increased number of lamellae, as well as smaller, thinner vessels. It is possible that due to decreased amounts of elastin available for vessel wall remodeling during development and in adulthood, Eln+/− vessels would not follow Murray's Law. We examined vessel bifurcations in six different physiologic regions, including the brain, heart, epidermis, ceocum (or cecum), testes, and intestines, in Eln+/− mice and wild-type (WT) littermates. All vessels were between 40 and 300 μm in diameter. We found that the diameters of both Eln+/− and WT vessels have an average of 13% error from the diameters predicted by Murray's Law, with no significant differences between genotypes or physiologic regions. The data suggest that vessels are optimized to follow Murray's Law, despite limitations on the proteins available for growth and remodeling of the vessel wall.

References

References
1.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. U.S.A.
,
12
(
3
), pp.
207
214
.10.1073/pnas.12.3.207
2.
Zamir
,
M.
,
1977
, “
Shear Forces and Blood Vessel Radii in the Cardiovascular System
,”
J. General Physiol.
,
69
(
4
), pp.
449
461
.10.1085/jgp.69.4.449
3.
Sherman
,
T. F.
,
1981
, “
On Connecting Large Vessels to Small. The Meaning of Murray's Law
,”
J. General Physiol.
,
78
(
4
), pp.
431
453
.10.1085/jgp.78.4.431
4.
van der Waal
,
E. C.
,
Mintz
,
G. S.
,
Garcia-Garcia
,
H. M.
,
Bui
,
A. B.
,
Pehlivanova
,
M.
,
Girasis
,
C.
,
Serruys
,
P. W.
,
van der Giessen
,
W. J.
, and
Weissman
,
N. J.
,
2009
, “
Intravascular Ultrasound and 3D Angle Measurements of Coronary Bifurcations
,”
Catheter. Cardiovasc. Intervent.
,
73
(
7
), pp.
910
916
.10.1002/ccd.21965
5.
Hutchins
,
G. M.
,
Miner
,
M. M.
, and
Boitnott
,
J. K.
,
1976
, “
Vessel Caliber and Branch-Angle of Human Coronary Artery Branch-Points
,”
Circ. Res.
,
38
(
6
), pp.
572
576
.10.1161/01.RES.38.6.572
6.
Taber
,
L. A.
,
Ng
,
S.
,
Quesnel
,
A. M.
,
Whatman
,
J.
, and
Carmen
,
C. J.
,
2001
, “
Investigating Murray's Law in the Chick Embryo
,”
J. Biomech.
,
34
(
1
), pp.
121
124
.10.1016/S0021-9290(00)00173-1
7.
Wilson
,
T. A.
,
1967
, “
Design of the Bronchial Tree
,”
Nature
,
213
(
5077
), pp.
668
669
.10.1038/213668a0
8.
LaBarbera
,
M.
,
1990
, “
Principles of Design of Fluid Transport Systems in Zoology
,”
Science
,
249
(
4972
), pp.
992
1000
.10.1126/science.2396104
9.
McCulloh
,
K. A.
,
Sperry
,
J. S.
, and
Adler
,
F. R.
,
2003
, “
Water Transport in Plants Obeys Murray's Law
,”
Nature
,
421
(
6926
), pp.
939
942
.10.1038/nature01444
10.
Wolinsky
,
H.
, and
Glagov
,
S.
,
1967
, “
A Lamellar Unit of Aortic Medial Structure and Function in Mammals
,”
Circ. Res.
,
20
(
1
), pp.
99
111
.10.1161/01.RES.20.1.99
11.
Li
,
D. Y.
,
Faury
,
G.
,
Taylor
,
D. G.
,
Davis
,
E. C.
,
Boyle
,
W. A.
,
Mecham
,
R. P.
,
Stenzel
,
P.
,
Boak
,
B.
, and
Keating
,
M. T.
,
1998
, “
Novel Arterial Pathology in Mice and Humans Hemizygous for Elastin
,”
J. Clin. Invest.
,
102
(
10
), pp.
1783
1787
.10.1172/JCI4487
12.
Faury
,
G.
,
Pezet
,
M.
,
Knutsen
,
R. H.
,
Boyle
,
W. A.
,
Heximer
,
S. P.
,
McLean
,
S. E.
,
Minkes
,
R. K.
,
Blumer
,
K. J.
,
Kovacs
,
A.
Kelly
,
D. P.
,
Li
,
D. Y.
,
Starcher
,
B.
, and
Mecham
,
R. P.
,
2003
, “
Developmental Adaptation of the Mouse Cardiovascular System to Elastin Haploinsufficiency
,”
J. Clin. Invest.
,
112
(
9
), pp.
1419
1428
.10.1172/JCI200319028
13.
Wagenseil
,
J. E.
,
Nerurkar
,
N. L.
,
Knutsen
,
R. H.
,
Okamoto
,
R. J.
,
Li
,
D. Y.
, and
Mecham
,
R. P.
,
2005
, “
Effects of Elastin Haploinsufficiency on the Mechanical Behavior of Mouse Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
3
), pp.
H1209
H1217
.10.1152/ajpheart.00046.2005
14.
Treuting
,
P. M.
, and
Dintzis
,
S. M.
,
2012
,
Comparative Anatomy and Histology, A Mouse and Human Atlas
, Academic Press, Waltham, MA.
15.
Greenwald
,
S. E.
,
2007
, “
Ageing of the Conduit Arteries
,”
J. Pathology
,
211
(
2
), pp.
157
172
.10.1002/path.2101
16.
Kamiya
,
A.
,
Bukhari
,
R.
, and
Togawa
,
T.
,
1984
, “
Adaptive Regulation of Wall Shear Stress Optimizing Vascular Tree Function
,”
Bull. Math. Biol.
,
46
(
1
), pp.
127
137
.10.1007/BF02463726
17.
Painter
,
P. R.
,
Eden
,
P.
, and
Bengtsson
,
H. U.
,
2006
, “
Pulsatile Blood Flow, Shear Force, Energy Dissipation and Murray's Law
,”
Theor. Biol. Med. Model.
,
3
, p.
31
.10.1186/1742-4682-3-31
18.
Kassab
,
G. S.
, and
Fung
,
Y. C.
,
1995
, “
The Pattern of Coronary Arteriolar Bifurcations and the Uniform Shear Hypothesis
,”
Ann. Biomed. Eng.
,
23
(
1
), pp.
13
20
.10.1007/BF02368296
19.
Langille
,
B. L.
,
1993
, “
Remodeling of Developing and Mature Arteries: Endothelium, Smooth Muscle, and Matrix
,”
J. Cardiovasc. Pharmacol.
,
21
(
Suppl. 1
), pp.
S11
S17
.10.1097/00005344-199321001-00003
You do not currently have access to this content.