Few experimental studies have examined surgical drilling in human bone, and no studies have inquired into this aspect for a popular commercially-available artificial bone used in biomechanical studies. Sixteen fresh-frozen human femurs and five artificial femurs were obtained. Cortical specimens were mounted into a clamping system equipped with a thrust force and torque transducer. Using a CNC machine, unicortical holes were drilled in each specimen at 1000 rpm, 1250 rpm, and 1500 rpm with a 3.2 mm diameter surgical drill bit. Feed rate was 120 mm/min. Statistical significance was set at p < 0.05. Force at increasing spindle speed (1000 rpm, 1250 rpm, and 1500 rpm), respectively, showed a range for human femurs (198.4 ± 14.2 N, 180.6 ± 14.0 N, and 176.3 ± 11.2 N) and artificial femurs (87.2 ± 19.3 N, 82.2 ± 11.2 N, and 75.7 ± 8.8 N). For human femurs, force at 1000 rpm was greater than at other speeds (p ≤ 0.018). For artificial femurs, there was no speed effect on force (p ≥ 0.991). Torque at increasing spindle speed (1000 rpm, 1250 rpm, and 1500 rpm), respectively, showed a range for human femurs (186.3 ± 16.9 N·mm, 157.8 ± 16.1 N·mm, and 140.2 ± 16.4 N·mm) and artificial femurs (67.2 ± 8.4 N·mm, 61.0 ± 2.9 N·mm, and 53.3 ± 2.9 N·mm). For human femurs, torque at 1000 rpm was greater than at other speeds (p < 0.001). For artificial femurs, there was no difference in torque for 1000 rpm versus higher speeds (p ≥ 0.228), and there was only a borderline difference between the higher speeds (p = 0.046). Concerning human versus artificial femurs, their behavior was different at every speed (force, p ≤ 0.001; torque, p < 0.001). For human specimens at 1500 rpm, force and torque were linearly correlated with standardized bone mineral density (sBMD) and the T-score used to clinically categorize bone quality (R ≥ 0.56), but there was poor correlation with age at all speeds (R ≤ 0.37). These artificial bones fail to replicate force and torque in human cortical bone during surgical drilling. To date, this is the largest series of human long bones biomechanically tested for surgical drilling.

References

References
1.
U.S. Department of Transportation
,
2007
, “Transportation Statistics Annual Report 2007,” www.bts.gov
2.
Fink
,
M.
,
Noble
,
P. C.
,
Kamaric
,
E.
, and
Alexander
,
J. W.
,
1992
, “
The Effect of Aging on the Shape of the Proximal Femur
,”
Transactions of the 38th Orthopedic Research Society Meeting
,
17
, p.
339
.
3.
Martin
,
R. B.
, and
Atkinson
,
P. J.
,
1977
, “
Age and Sex-Related Changes in the Structure and Strength of the Human Femoral Shaft
,”
J. Biomech.
,
10
, pp.
223
231
.10.1016/0021-9290(77)90045-8
4.
Marsh
,
J. L.
,
Slongo
,
T. F.
,
Agel
,
J.
,
Broderick
,
J. S.
,
Creevey
,
W.
,
DeCoster
,
T. A.
,
Prokuski
,
L.
,
Sirkin
,
M. S.
,
Ziran
,
B.
,
Henley
,
B.
, and
Audigé
,
L.
,
2007
, “
Fracture and Dislocation Classification Compendium - 2007: Orthopaedic Trauma Association Classification, Database and Outcomes Committee
,”
J. Orthop. Trauma.
,
21
(
10 Suppl
), pp.
S1
S133
.10.1097/00005131-200711101-00001
5.
Elstrom
,
J. A.
,
Virkus
,
W. W.
, and
Pankovich
,
A. M.
, eds.,
2006
,
Handbook of Fractures
,
3rd ed.
,
McGraw-Hill
,
New York
, pp.
264
313
.
6.
Zdero
,
R.
,
Keast-Butler
,
O.
, and
Schemitsch
,
E. H.
,
2010
, “
A Biomechanical Comparison of Two Triple-Screw Methods for Femoral Neck Fracture Fixation in a Synthetic Bone Model
,”
J. Trauma
,
69
(
6
), pp.
1537
1544
.10.1097/TA.0b013e3181efb1d1
7.
Holmes
,
C. A.
,
Edwards
,
W. T.
,
Myers
,
E. R.
,
Lewallen
,
D. G.
,
White
,
A. A.
, III
, and
Hayes
,
W. C.
,
1993
, “
Biomechanics of Pin and Screw Fixation of Femoral Neck Fractures
,”
J. Orthop. Trauma
,
7
, pp.
242
247
.10.1097/00005131-199306000-00008
8.
Kauffman
,
J. I.
,
Simon
,
J. A.
,
Kummer
,
F. J.
,
Pearlman
,
C. J.
,
Zuckerman
,
J. D.
, and
Koval
,
K. J.
,
1999
, “
Internal Fixation of Femoral Neck Fractures With Posterior Comminution: A Biomechanical Study
,”
J. Orthop. Trauma
,
13
, pp.
155
159
.10.1097/00005131-199903000-00001
9.
Blair
,
B.
,
Koval
,
K. J.
,
Kummer
,
F.
, and
Zuckerman
,
J. D.
,
1994
, “
Basicervical Fractures of the Proximal Femur: A Biomechanical Study of 3 Internal Fixation Techniques
,”
Clin. Orthop. Relat. Res.
,
306
, pp.
256
263
.
10.
Aminian
,
A.
,
Gao
,
F.
,
Fedoriw
,
W. W.
,
Zhang
,
L. Q.
,
Kalainov
,
D. M.
, and
Merk
,
B. R.
,
2007
, “
Vertically Oriented Femoral Neck Fractures: Mechanical Analysis of Four Fixation Techniques
,”
J. Orthop. Trauma
,
21
, pp.
544
548
.10.1097/BOT.0b013e31814b822e
11.
Baitner
,
A. C.
,
Maurer
,
S. G.
,
Hickey
,
D. G.
,
Jazrawi
,
L. M.
,
Kummer
,
F. J.
,
Jamal
,
J.
,
Goldman
,
S.
, and
Koval
,
K. J.
,
1999
, “
Vertical Shear Fractures of the Femoral Neck. A Biomechanical Study
,”
Clin. Orthop. Relat. Res.
,
367
, pp.
300
305
.10.1097/00003086-199910000-00037
12.
Springer
,
E. R.
,
Lachiewicz
,
P. F.
, and
Gilbert
,
J. A.
,
1991
, “
Internal Fixation of Femoral Neck Fractures: A Comparative Biomechanical Study of Knowles Pins and 6.5-mm Cancellous Screws
,”
Clin. Orthop. Relat. Res.
,
267
, pp.
85
92
.10.1097/00003086-199106000-00011
13.
Stankewich
,
C. J.
,
Chapman
,
J.
,
Muthusamy
,
R.
,
Quaid
,
G.
,
Schemitsch
,
E.
,
Tencer
,
A. F.
, and
Ching
,
R. P.
,
1996
, “
Relationship of Mechanical Factors to the Strength of Proximal Femur Fractures Fixed With Cancellous Screws
,”
J. Orthop. Trauma
,
10
, pp.
248
257
.10.1097/00005131-199605000-00005
14.
Shah
,
S.
,
Kim
,
S. Y. R.
,
Dubov
,
A.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2011
, “
The Biomechanics of Plate Fixation of Periprosthetic Femoral Fractures Near the Tip of a Total Hip Implant: Cables, Screws, or Both?
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
225
(
9
), pp.
845
856
.10.1177/0954411911413060
15.
Dubov.
A.
,
Kim
,
S. Y. R.
,
Shah
,
S.
,
Schemitsch
,
E. H.
,
Zdero
,
R.
, and
Bougherara
,
H.
,
2011
, “
The Biomechanics of Plate Repair of Periprosthetic Femur Fractures Near the Tip of a Total Hip Implant: The Effect of Cable-Screw Position
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
225
(
9
), pp.
857
865
.10.1177/0954411911410642
16.
Zdero
,
R.
,
Walker
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
,
2008
, “
Biomechanical Evaluation of Periprosthetic Femoral Fracture Fixation
,”
J. Bone Jt. Surg., Am. Vol.
,
90
(
5
), pp.
1068
1077
.10.2106/JBJS.F.01561
17.
Talbot
,
M.
,
Zdero
,
R.
,
Garneau
,
D.
,
Cole
,
P. A.
, and
Schemitsch
,
E. H.
,
2007
, “
Fixation of Long Bone Segmental Defects: A Biomechanical Study
,”
Injury
,
39
, pp.
181
186
.10.1016/j.injury.2007.08.026
18.
Lever
,
J. P.
,
Zdero
,
R.
,
Nousiainen
,
M. T.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
,
2010
, “
The Biomechanical Analysis of Three Plating Fixation Systems for Periprosthetic Femoral Fracture Near the Tip of a Total Hip Arthroplasty
,”
J. Orthop. Surg. Res.
,
5
:45.10.1186/1749-799X-5-45
19.
Bougherara
,
H.
,
Zdero
,
R.
,
Miric
,
M.
,
Shah
,
S.
,
Hardisty
,
M.
,
Zalzal
,
P.
, and
Schemitsch
,
E. H.
,
2009
, “
The Biomechanics of the T2 Femoral Nailing System: A Comparison of Synthetic Femurs With Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
223
(
H3
), pp.
303
314
.10.1243/09544119JEIM501
20.
McConnell
,
A.
,
Zdero
,
R.
,
Syed
,
K.
,
Peskun
,
C.
, and
Schemitsch
,
E. H.
,
2008
, “
The Biomechanics of Ipsilateral Intertrochanteric and Femoral Shaft Fractures: A Comparison of 5 Fracture Fixation Techniques
,”
J. Orthop. Trauma
,
22
(
8
), pp.
517
524
.10.1097/BOT.0b013e31817d97bc
21.
Wolinsky
,
P.
,
Tejwani
,
N.
,
Richmond
,
J. H.
,
Koval
,
K. J.
,
Egol
,
K.
, and
Stephen
,
D. J. G.
,
2001
, “
Controversies in Intramedullary Nailing of Femoral Shaft Fractures
,”
J. Bone Jt. Surg., Am. Vol.
,
83
(
9
), pp.
1404
1415
.
22.
Cheung
,
G.
,
Zalzal
,
P.
,
Bhandari
,
M.
,
Spelt
,
J. K.
, and
Papini
,
M.
,
2004
, “
Finite Element Analysis of a Femoral Retrograde Intramedullary Nail Subject to Gait Loading
,”
Med. Eng. Phys.
,
26
(
2
), pp.
93
108
.10.1016/j.medengphy.2003.10.006
23.
Kuzyk
,
P. R. T.
,
Shah
,
S.
,
Zdero
,
R.
,
Olsen
,
M.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
,
2012
, “
A Biomechanical Comparison of Static Versus Dynamic Lag Screw Modes for Cephalomedullary Nails Used to Fix Unstable Peritrochanteric Fractures
,”
J. Trauma Acute Care Surg.
,
72
(
2
),
E65
E70
.
24.
Kuzyk
,
P. R. T.
,
Zdero
,
R.
,
Shah
,
S.
,
Olsen
,
M.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
,
2012
, “
Femoral Head Lag Screw Position for Cephalomedullary Nails: A Biomechanical Analysis
,”
J. Orthop. Trauma
,
26
(
7
), pp.
414
421
.10.1097/BOT.0b013e318229acca
25.
Wiggins
,
K. L.
, and
Malkin
,
S.
,
1976
, “
Drilling of Bone
,”
J. Biomech.
,
9
(
9
), pp.
553
559
.10.1016/0021-9290(76)90095-6
26.
Powers
,
M. J.
,
2006
, “
The Mechanics of Bone Drilling: Experiment and Finite Element Predictions
,”
Ph.D. thesis
,
University of Calgary
,
Calgary, Canada
.
27.
Ong
,
F. R.
, and
Bouazza-Marouf
,
K.
,
1998
, “
Drilling of Bone: A Robust Automatic Method for the Detection of Drill Bit Break-Through
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
212
, pp.
209
221
.10.1243/0954411981533999
28.
Allotta
,
B.
,
Giacalone
,
G.
, and
Rinaldi
,
L.
,
1997
, “
A Hand-Held Drilling Tool for Orthopedic Surgery
,”
IEEE/ASME Trans. Mechatron.
,
2
(
4
), pp.
218
229
.10.1109/3516.653046
29.
Ong
,
F. R.
, and
Bouazza-Marouf
,
K.
,
2000
, “
Evaluation of Bone Strength: Correlation Between Measurements of Bone Mineral Density and Drilling Force
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
214
, pp.
385
399
.10.1243/0954411001535426
30.
Jacob
,
C. H.
,
Berry
,
J. T.
,
Pope
,
M. H.
, and
Hoaglund
,
F. T.
,
1976
, “
A Study of the Bone Machining Process—Drilling
,”
J. Biomech.
,
9
(
5
), pp.
343
349
.10.1016/0021-9290(76)90056-7
31.
Hobkirk
,
J. A.
, and
Rusiniak
,
K.
,
1977
, “
Investigation of Variable Factors in Drilling Bone
,”
J. Oral Surg.
,
35
, pp.
968
973
.
32.
Alam
,
K.
,
Mitrofanov
,
A. V.
, and
Silberschmidt
,
V. V.
,
2011
, “
Experimental Investigations of Forces and Torque in Conventional and Ultrasonically-Assisted Drilling of Cortical Bone
,”
Med. Eng. Phys.
,
33
, pp.
234
239
.10.1016/j.medengphy.2010.10.003
33.
Karalis
,
T.
, and
Galanos
,
P.
,
1982
, “
Research on the Mechanical Impedance Of Human Bone by a Drilling Test
,”
J. Biomech.
,
15
, pp.
561
581
.10.1016/0021-9290(82)90069-0
34.
Alam
,
K.
,
Mitrofanov
,
A. V.
, and
Silberschmidt
,
V. V.
,
2009
, “
Finite Element Analysis of Forces of Plane Cutting of Cortical Bone
,”
Comput. Mater. Sci.
,
46
, pp.
738
743
.10.1016/j.commatsci.2009.04.035
35.
Hillery
,
M. T.
, and
Shuaib
,
I.
,
1999
, “
Temperature Effects in the Drilling of Human and Bovine Bone
,”
J. Mater. Process. Technol.
,
92–93
, pp.
302
308
.10.1016/S0924-0136(99)00155-7
36.
Lee
,
J.
,
Gozen
,
B. A.
, and
Ozdoganlar
,
O. B.
,
2012
, “
Modeling and Experimentation of Bone Drilling Forces
,”
J. Biomech.
,
45
, pp.
1076
1083
.10.1016/j.jbiomech.2011.12.012
37.
Natali
,
C.
,
Ingle
,
P.
, and
Dowell
,
J.
,
1996
, “
Orthopaedic Bone Drills: Can They be Improved?
,”
J. Bone Jt. Surg., Br. Vol.
,
78
, pp.
357
362
.
38.
Tsai
,
M.-D.
,
Hsieh
,
M.-S.
, and
Tsai
,
C.-H.
,
2007
, “
Bone Drilling Haptic Interaction for Orthopedic Surgical Simulator
,”
Comput. Biol. Med.
,
37
, pp.
1709
1718
.10.1016/j.compbiomed.2007.04.006
39.
Karmani
,
S.
, and
Lam
,
F.
,
2004
, “
The Design and Function of Surgical Drills and K-Wires
,”
Curr. Orthop.
,
18
, pp.
484
490
.10.1016/j.cuor.2004.12.011
40.
Yilbas
,
B. S.
,
Yilbas
,
Z.
, and
Sami
,
M.
,
1996
, “
Thermal Processes Taking Place in the Bone During CO2 Laser Irradiation
,”
Opt. Laser Technol.
,
48
(
7
), pp.
513
519
.10.1016/S0030-3992(96)00006-0
41.
Hosseini-Suny
,
K.
,
Momeni
,
H.
, and
Janabi-Sharifi
,
F.
,
2010
, “
A Modified Adaptive Controller Design for Teleoperation Systems
,”
Rob. Auton. Syst.
,
58
, pp.
676
683
.10.1016/j.robot.2009.11.006
42.
Sawbones Worldwide
,
2012
, “Custom Orthopaedic Medical Models for Training,” Retrieved Aug. 1, 2012, www.sawbones.com/catalog/pdf/us_catalog.pdf
43.
Papini
,
M.
,
Zdero
,
R.
,
Schemitsch
,
E. H.
, and
Zalzal
,
P.
,
2007
, “
The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs
,”
J. Biomech. Eng.
,
129
(
1
), pp.
12
19
.10.1115/1.2401178
44.
Heiner
,
A. D.
, and
Brown
,
T. D.
,
2001
, “
Structural Properties of a New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
,
34
, pp.
773
781
.10.1016/S0021-9290(01)00015-X
45.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
,
1996
, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
,
29
(
4
), pp.
525
535
.10.1016/0021-9290(95)00084-4
46.
Zdero
,
R.
,
Elfallah
,
K.
,
Olsen
,
M.
, and
Schemitsch
,
E. H.
,
2009
, “
Cortical Screw Purchase in Synthetic and Human Femurs
,”
J. Biomech. Eng.
,
131
(
9
), p.
094503
.10.1115/1.3194755
47.
Zdero
,
R.
,
Olsen
,
M.
,
Bougherara
,
H.
, and
Schemitsch
,
E. H.
,
2008
, “
Cancellous Bone Screw Purchase: A Comparison of Synthetic Femurs, Human Femurs, and Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
(
H8
), pp.
1175
1183
.10.1243/09544119JEIM409
48.
Nicayenzi
,
B.
,
Crookshank
,
M.
,
Olsen
,
M.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2012
, “
Biomechanical Measurements of Cortical Screw Stripping Torque in Human Versus Artificial Femurs
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
226
(
8
), pp.
645
651
.10.1177/0954411912450998
49.
Crookshank
,
M.
,
Coquim
,
J.
,
Olsen
,
M.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2012
, “
Biomechanical Measurements of Axial Crush Injury to the Distal Condyles of Human and Synthetic Femurs
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
226
(
4
), pp.
320
329
.10.1177/0954411912438038
50.
Reich
,
T.
, and
Gefen
,
A.
,
2006
, “
Effect of Trabecular Bone Loss on Cortical Strain Rate During Impact in an In Vitro Model of Avian Femur
,”
Biomed. Eng. Online
,
5
:45.10.1186/1475-925X-5-45
51.
Passi
,
N.
, and
Gefen
,
A.
,
2005
, “
Trabecular Bone Contributes to Strength of the Proximal Femur Under Mediolateral Impact in the Avian
,”
J. Biomech. Eng.
,
127
(
1
) pp.
198
203
.10.1115/1.1835366
52.
Lim
,
T. Y.
,
2009
, “
Investigation on Animal Bone Strength
,”
B.Sc. thesis
,
School of Science and Technology, SIM University
,
Singapore
.
53.
Woo
,
Y. P.
,
2008
, “
Determination of Biomechanical Properties of Chicken Cortical Bone
,”
B.Sc. thesis
,
School of Science and Technology, SIM University
,
Singapore
.
54.
Eshet
,
Y.
,
Mann
,
R. R.
,
Anaton
,
A.
,
Yacoby
,
R.
,
Gefen
,
A.
, and
Jerby
,
E.
,
2006
, “
Microwave Drilling of Bones
,”
IEEE Trans. Biomed. Eng.
,
53
(
6
), pp.
1174
1182
.10.1109/TBME.2006.873562
55.
Huiskes
,
R.
, and
Van Rietbergen
,
B.
,
2005
, “
Biomechanics of Bone
,”
Basic Orthopaedic Biomechanics and Mechano-Biology
,
3rd ed.
,
V. C.
Mow
and
R.
Huiskes
, eds.,
Lippincott Williams and Wilkins
,
Philadelphia, PA
, pp.
123
179
.
56.
Ema
,
S.
, and
Marui
,
E.
,
2003
, “
Theoretical Analysis on Chatter Vibration in Drilling and its Suppression
,”
J. Mater. Process. Technol.
,
138
, pp.
572
583
.10.1016/S0924-0136(03)00148-1
57.
Mellinger
,
J. C.
,
Ozdoganlar
,
O. B.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
2002
, “
Modeling Chip Evacuation Forces and Prediction of Chip-Clogging in Drilling
,”
J. Manuf. Sci. Eng.
,
124
, pp.
605
614
.10.1115/1.1473146
58.
Olsen
,
M.
,
Sellan
,
M.
,
Zdero
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
,
2011
, “
A Biomechanical Comparison of Epiphyseal Versus Metaphyseal Fixed Bone-Conserving Hip Arthroplasty
,”
J. Bone Jt. Surg., Am. Vol.
,
93
(
Suppl 2
), pp.
122
127
.10.2106/JBJS.J.01709
59.
Nicayenzi
,
B.
,
Shah
,
S.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2011
, “
The Biomechanical Effect of Changes in Cancellous Bone Density on Synthetic Femur Behaviour
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
225
(
11
), pp.
1050
1060
.10.1177/0954411911420004
60.
Abrao
,
A. M.
,
Faria
,
P. E.
,
Campos Rubio
,
J. C.
,
Reis
,
P.
,
Paulo Davim
,
J.
,
2007
, “
Drilling of Fiber Reinforced Plastics: A Review
,”
J. Mater. Process. Technol.
,
186
, pp.
1
7
.10.1016/j.jmatprotec.2006.11.146
61.
Mohan
,
N. S.
,
Ramachandra
,
A.
, and
Kulkarni
,
S. M.
,
2005
, “
Influence of Process Parameters on Cutting Force and Torque During Drilling of Glass–Fiber Polyester Reinforced Composites
,”
Compos. Struct.
,
71
, pp.
407
413
.10.1016/j.compstruct.2005.09.039
62.
Mather
,
B. S.
,
1968
, “
Observations on the Effects of Static and Impact Loading on the Human Femur
,”
J. Biomech.
,
1
(
4
), pp.
331
335
.10.1016/0021-9290(68)90027-4
63.
Zdero
,
R.
, and
Schemitsch
,
E. H.
,
2009
, “
The Effect of Screw Pullout Rate on Screw Purchase in Synthetic Cancellous Bone
,”
J. Biomech. Eng.
,
131
(
2
), p.
024501
.10.1115/1.3005344
64.
Zdero
,
R.
,
Shah
,
S.
,
Mosli
,
M.
,
Bougherara
,
H.
, and
Schemitsch
,
E. H.
,
2010
, “
The Effect of the Screw Pull-Out Rate on Cortical Screw Purchase in Unreamed and Reamed Synthetic Long Bones
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
224
(
3
), pp.
503
513
.10.1243/09544119JEIM675
65.
Matthews
,
L. S.
, and
Hirsch
,
C.
,
1972
, “
Temperatures Measured in Human Cortical Bone When Drilling
,”
J. Bone Jt. Surg., Am. Vol.
,
54
, pp.
297
308
.
66.
Palanikumar
,
K.
, and
Paulo Davim
,
J.
,
2007
, “
Mathematical Model to Predict Tool Wear on the Machining of Glass Fibre Reinforced Plastic Composites
,”
Mater. Des.
,
28
, pp.
2008
2014
.10.1016/j.matdes.2006.06.018
67.
Jindal
,
A.
,
2012
, “
Analysis of Tool Wear Rate in Drilling Operation Using Scanning Electron Microscope (SEM)
,”
J. Min. Mater. Charact. Eng.
,
11
(
1
), pp.
43
54
.
68.
Sanders
,
R.
,
2008
,
Trauma: Core Knowledge in Orthopaedics
,
Mosby-Elsevier
,
Philadelphia, PA
, pp.
253
296
.
69.
Sedlin
,
E. D.
, and
Hirsch
,
C.
,
1966
, “
Factors Affecting the Determination of the Physical Properties of Femoral Cortical Bone
,”
Acta Orthop. Scand.
,
37
, pp.
29
48
.10.3109/17453676608989401
70.
Moss
,
R. W.
,
1964
, “
Histopathologic Reaction of Bone to Surgical Cutting
,”
Oral Surg., Oral Med., Oral Pathol.
,
17
, pp.
405
414
.10.1016/0030-4220(64)90515-8
71.
Costich
,
E. R.
,
Youngblood
,
P. J.
, and
Walden
,
J. M.
,
1964
, “
A Study of the Effects of High-Speed Rotary Instruments on Bone Repair in Dogs
,”
Oral Surg., Oral Med., Oral Pathol.
,
17
, pp.
563
571
.10.1016/0030-4220(64)90359-7
72.
Elias
,
G. K.
,
Varadarajan
,
A. S.
,
Rani
,
J.
,
2012
, “
Influence of Process Parameters on Cutting Force and Torque of Drilling of Glass Fiber Reinforced Epoxy Composites
,”
Int. J. Comput. Technol. Electron. Eng.
,
2
(
2
), pp.
26
31
.
73.
Bowman
,
S. M.
,
Zeind
,
J.
,
Gibson
,
L. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1996
, “
The Tensile Behavior of Demineralized Bovine Cortical Bone
,”
J. Biomech.
,
29
(
11
), pp.
1497
1501
.10.1016/0021-9290(96)84546-5
74.
Carter
,
D. R.
,
Caler
,
W. E.
,
Spengler
,
D. M.
, and
Frankel
,
V. H.
,
1981
, “
Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range
,”
Acta Orthop. Scand.
,
52
(
5
), pp.
481
490
.10.3109/17453678108992136
75.
Al-Jahwari
,
A.
,
Schemitsch
,
E. H.
,
Wunder
,
J. S.
,
Ferguson
,
P. C.
, and
Zdero
,
R.
,
2012
, “
The Biomechanical Effect of Torsion on Humeral Shaft Repair Techniques for Completed Pathological Fractures
”,
J. Biomech. Eng.
,
134
(
2
), p.
024501
.10.1115/1.4005696
76.
Ahmadi
,
S.
,
Shah
,
S.
,
Wunder
,
J. S.
,
Schemitsch
,
E. H.
,
Ferguson
,
P. C.
, and
Zdero
,
R.
,
2012
, “
The Biomechanics of Three Different Fracture Fixation Implants for Distal Femur Repair in the Presence of a Tumor-like Defect
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
, in press.
77.
Popowics
,
T. E.
,
Zhub
,
Z.
, and
Herring
,
S. W.
,
2002
, “
Mechanical Properties of the Periosteum in the Pig, Sus Scrofa
,”
Arch. Oral Biol.
,
47
, pp.
733
741
.10.1016/S0003-9969(02)00065-1
78.
Bertram
,
J. E. A.
,
Polevoy
,
Y.
,
Cullinane
,
D. M.
,
1998
, “
Mechanics of Avian Fibrous Periosteum: Tensile and Adhesion Properties During Growth
,”
Bone
,
22
, pp.
669
675
.10.1016/S8756-3282(98)00035-0
79.
Uchiyama
,
E.
,
Yamakoshi
,
K.
, and
Sasaki
,
T.
,
1998
, “
Measurement of Mechanical Characteristics of Tibial Periosteum and Evaluation of Local Differences
,”
J. Biomech. Eng.
,
120
, pp.
85
91
.10.1115/1.2834311
80.
Yiannakopoulos
,
C. K.
,
Kanellopoulos
,
A. D.
,
Trovas
,
G. P.
,
Dontas
,
I. A.
, and
Lyritis
,
G. P.
,
2008
, “
The Biomechanical Capacity of the Periosteum in Intact Long Bones
,”
Arch. Orthop. Trauma Surg.
,
128
(
1
), pp.
117
120
.10.1007/s00402-007-0433-5
You do not currently have access to this content.