Background: The objectives of this study were to characterize the translational and rotational accuracy of a model-based tracking technique for quantifying elbow kinematics and to demonstrate its in vivo application. Method of Approach: The accuracy of a model-based tracking technique for quantifying elbow kinematics was determined in an in vitro experiment. Biplane X-ray images of a cadaveric elbow were acquired as it was manually moved through flexion-extension. The 3D position and orientation of each bone was determined using model-based tracking. For comparison, the position and orientation of each bone was also determined by tracking the position of implanted beads with dynamic radiostereometric analysis. Translations and rotations were calculated for both the ulnohumeral and radiohumeral joints, and compared between measurement techniques. To demonstrate the in vivo application of this technique, biplane X-ray images were acquired as a human subject extended their elbow from full flexion to full extension. Results: The in vitro validation demonstrated that the model-based tracking technique is capable of accurately measuring elbow motion, with reported errors averaging less than ±1.0 mm and ±1.0 deg. For the in vivo application, the carrying angle changed from an 8.3 ± 0.5 deg varus position in full flexion to an 8.4 ± 0.5 deg valgus position in full extension. Conclusions: Model-based tracking is an accurate technique for measuring in vivo, 3D, dynamic elbow motion. It is anticipated that this experimental approach will enhance our understanding of elbow motion under normal and pathologic conditions.

References

References
1.
An
,
K. N.
,
2005
, “
Kinematics and Constraint of Total Elbow Arthroplasty
,”
J. Shoulder Elbow Surg.
,
14
(
1S
), pp.
168S
173S
.10.1016/j.jse.2004.09.035
2.
Bottlang
,
M.
,
Madey
,
S. M.
,
Steyers
,
C. M.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
,
2000
, “
Assessment of Elbow Joint Kinematics in Passive Motion by Electromagnetic Motion Tracking
,”
J. Orthop. Res.
,
18
(
2
), pp.
195
202
.10.1002/jor.1100180206
3.
Bottlang
,
M.
,
O'Rourke
,
M. R.
,
Madey
,
S. M.
,
Steyers
,
C. M.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
,
2000
, “
Radiographic Determinants of the Elbow Rotation Axis: Experimental Identification and Quantitative Validation
,”
J. Orthop. Res.
,
18
(
5
), pp.
821
828
.10.1002/jor.1100180521
4.
Duck
,
T. R.
,
Dunning
,
C. E.
,
Armstrong
,
A. D.
,
Johnson
,
J. A.
, and
King
,
G. J.
,
2003
, “
Application of Screw Displacement Axes to Quantify Elbow Instability
,”
Clin. Biomech. (Bristol, Avon)
,
18
(
4
), pp.
303
310
.10.1016/S0268-0033(03)00021-4
5.
Duck
,
T. R.
,
Dunning
,
C. E.
,
King
,
G. J.
, and
Johnson
,
J. A.
,
2003
, “
Variability and Repeatability of the Flexion Axis at the Ulnohumeral Joint
,”
J. Orthop. Res.
,
21
(
3
), pp.
399
404
.10.1016/S0736-0266(02)00198-5
6.
Eygendaal
,
D.
,
Olsen
,
B. S.
,
Jensen
,
S. L.
,
Seki
,
A.
, and
Sojbjerg
,
J. O.
,
1999
, “
Kinematics of Partial and Total Ruptures of the Medial Collateral Ligament of the Elbow
,”
J. Shoulder Elbow Surg.
,
8
(
6
), pp.
612
616
.10.1016/S1058-2746(99)90099-X
7.
Floris
,
S.
,
Olsen
,
B. S.
,
Dalstra
,
M.
,
Sojbjerg
,
J. O.
, and
Sneppen
,
O.
,
1998
, “
The Medial Collateral Ligament of the Elbow Joint: Anatomy and Kinematics
,”
J. Shoulder Elbow Surg.
,
77
(
4
), pp.
345
351
.10.1016/S1058-2746(98)90021-0
8.
Johnson
,
J. A.
,
Rath
,
D. A.
,
Dunning
,
C. E.
,
Roth
,
S. E.
, and
King
,
G. J.
,
2000
, “
Simulation of Elbow and Forearm Motion In Vitro Using a Load Controlled Testing Apparatus
,”
J. Biomech.
,
33
(
5
), pp.
635
639
.10.1016/S0021-9290(99)00204-3
9.
Kamineni
,
S.
,
Hirahara
,
H.
,
Neale
,
P.
,
O'Driscoll
,
S. W.
,
An
,
K. N.
, and
Morrey
,
B. F.
,
2007
, “
Effectiveness of the Lateral Unilateral Dynamic External Fixator After Elbow Ligament Injury
,”
J. Bone Joint Surg. Am.
,
89
(
8
), pp.
1802
1809
.10.2106/JBJS.E.00165
10.
King
,
G. J.
,
Itoi
,
E.
,
Niebur
,
G. L.
,
Morrey
,
B. F.
, and
An
,
K. N.
,
1994
, “
Motion and Laxity of the Capitellocondylar Total Elbow Prosthesis
,”
J. Bone Joint Surg. Am.
,
76
(
7
), pp.
1000
1008
.
11.
Morrey
,
B. F.
, and
Chao
,
E. Y.
,
1976
, “
Passive Motion of the Elbow Joint
,”
J. Bone Joint Surg. Am.
,
58
(
4
), pp.
501
508
.
12.
Morrey
,
B. F.
,
Tanaka
,
S.
, and
An
,
K. N.
,
1991
, “
Valgus Stability of the Elbow. A Definition of Primary and Secondary Constraints
,”
Clin. Orthop. Relat. Res.
265
, pp.
187
195
.10.1097/00003086-199104000-00021
13.
Cutti
,
A. G.
,
Cappello
,
A.
, and
Davalli
,
A.
,
2006
, “
In Vivo Validation of a New Technique that Compensates for Soft Tissue Artefact in the Upper-Arm: Preliminary Results
,”
Clin. Biomech. (Bristol, Avon)
21
(
1
), pp.
S13
S19
.10.1016/j.clinbiomech.2005.09.018
14.
Fleisig
,
G. S.
,
Bolt
,
B.
,
Fortenbaugh
,
D.
,
Wilk
,
K. E.
, and
Andrews
,
J. R.
,
2011
, “
Biomechanical Comparison of Baseball Pitching and Long-Toss: Implications for Training and Rehabilitation
,”
J. Orthop. Sports Phys. Ther.
,
41
(
5
), pp.
296
303
.10.2519/jospt.2011.3568
15.
Huang
,
Y. H.
,
Wu
,
T. Y.
,
Learman
,
K. E.
, and
Tsai
,
Y. S.
,
2010
, “
A Comparison of Throwing Kinematics Between Youth Baseball Players With and Without a History of Medial Elbow Pain
,”
Chin. J. Physiol.
,
53
(
3
), pp.
160
166
.10.4077/CJP.2010.AMK026
16.
Melchiorri
,
G.
,
Padua
,
E.
,
Padulo
,
J.
,
D'Ottavio
,
S.
,
Campagna
,
S.
, and
Bonifazi
,
M.
,
2011
, “
Throwing Velocity and Kinematics in Elite Male Water Polo Players
,”
J. Sports Med. Phys. Fitness
,
51
(
4
), pp.
541
546
.
17.
Nissen
,
C. W.
,
Westwell
,
M.
,
Ounpuu
,
S.
,
Patel
,
M.
,
Solomito
,
M.
, and
Tate
,
J.
,
2009
, “
A Biomechanical Comparison of the Fastball and Curveball in Adolescent Baseball Pitchers
,”
Am. J. Sports Med.
,
37
(
8
), pp.
1492
1498
.10.1177/0363546509333264
18.
Stokdijk
,
M.
,
Biegstraaten
,
M.
,
Ormel
,
W.
,
de Boer
,
Y. A.
,
Veeger
,
H. E.
, and
Rozing
,
P. M.
,
2000
, “
Determining the Optimal Flexion-Extension Axis of the Elbow In Vivo – A Study of Interobserver and Intraobserver Reliability
,”
J. Biomech.
,
33
(
9
), pp.
1139
1145
.10.1016/S0021-9290(00)00079-8
19.
Stokdijk
,
M.
,
Meskers
,
C. G.
,
Veeger
,
H. E.
,
de Boer
,
Y. A.
, and
Rozing
,
P. M.
,
1999
, “
Determination of the Optimal Elbow Axis for Evaluation of Placement of Prostheses
,”
Clin. Biomech. (Bristol, Avon)
14
(
3
), pp.
177
184
.10.1016/S0268-0033(98)00057-6
20.
Werner
,
S. L.
,
Guido
,
J. A.
,
Delude
,
N. A.
,
Stewart
,
G. W.
,
Greenfield
,
J. H.
, and
Meister
,
K.
,
2010
, “
Throwing Arm Dominance in Collegiate Baseball Pitching: A Biomechanical Study
,”
Am. J. Sports Med.
,
38
(
8
), pp.
1606
1610
.10.1177/0363546510365511
21.
Werner
,
S. L.
,
Guido
,
J. A.
, Jr.
,
Stewart
,
G. W.
,
McNeice
,
R. P.
,
VanDyke
,
T.
, and
Jones
,
D. G.
,
2007
, “
Relationships Between Throwing Mechanics and Shoulder Distraction in Collegiate Baseball Pitchers
,”
J. Shoulder Elbow Surg.
,
16
(
1
), pp.
37
42
.10.1016/j.jse.2006.05.007
22.
Chin
,
A.
,
Lloyd
,
D.
,
Alderson
,
J.
,
Elliott
,
B.
, and
Mills
,
P.
,
2010
, “
A Marker-Based Mean Finite Helical Axis Model to Determine Elbow Rotation Axes and Kinematics In Vivo
,”
J. Appl. Biomech.
,
26
(
3
), pp.
305
315
.
23.
Ericson
,
A.
,
Arndt
,
A.
,
Stark
,
A.
,
Wretenberg
,
P.
, and
Lundberg
,
A.
,
2003
, “
Variation in the Position and Orientation of the Elbow Flexion Axis
,”
J. Bone Joint Surg. Br.
,
85
(
4
), pp.
538
544
.10.1302/0301-620X.85B4.13925
24.
Ericson
,
A.
,
Stark
,
A.
, and
Arndt
,
A.
,
2008
, “
Variation in the Position of the Elbow Flexion Axis After Total Joint Replacement With Three Different Prostheses
,”
J. Shoulder Elbow Surg.
,
17
(
5
), pp.
760
767
.10.1016/j.jse.2008.03.003
25.
London
,
J.T.
,
1981
, “
Kinematics of the Elbow
,”
J. Bone Joint Surg. Am.
,
63
(
4
), pp.
529
535
.
26.
Futai
,
K.
,
Tomita
,
T.
,
Yamazaki
,
T.
,
Murase
,
T.
,
Yoshikawa
,
H.
, and
Sugamoto
,
K.
,
2010
, “
In Vivo Three-Dimensional Kinematics of Total Elbow Arthroplasty Using Fluoroscopic Imaging
,”
Int. Orthop.
,
34
(
6
), pp.
847
854
.10.1007/s00264-010-0972-1
27.
Bey
,
M. J.
,
Zauel
,
R.
,
Brock
,
S. K.
, and
Tashman
,
S.
,
2006
, “
Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, In Vivo Glenohumeral Joint Kinematics
,”
J. Biomech. Eng.
,
128
(
4
), pp.
604
609
.10.1115/1.2206199
28.
Anderst
,
W.
,
Zauel
,
R.
,
Bishop
,
J.
,
Demps
,
E.
, and
Tashman
,
S.
,
2009
, “
Validation of Three-Dimensional Model-Based Tibio-Femoral Tracking During Running
,”
Med. Eng. Phys.
,
31
(
1
), pp.
10
16
.10.1016/j.medengphy.2008.03.003
29.
Bey
,
M. J.
,
Kline
,
S. K.
,
Tashman
,
S.
, and
Zauel
,
R.
,
2008
, “
Accuracy of Biplane X-Ray Imaging Combined With Model-Based Tracking for Measuring In Vivo Patellofemoral Joint Motion
,”
J. Orthop. Surg. Res.
,
3
, p.
38
.10.1186/1749-799X-3-38
30.
McDonald
,
C. P.
,
Bachison
,
C. C.
,
Chang
,
V.
,
Bartol
,
S. W.
, and
Bey
,
M. J.
,
2010
, “
Three-Dimensional Dynamic In Vivo Motion of the Cervical Spine: Assessment of Measurement Accuracy and Preliminary Findings
,”
Spine
10
(
6
), pp.
497
504
.10.1016/j.spinee.2010.02.024
31.
Anderst
,
W. J.
,
Baillargeon
,
E.
,
Donaldson
,
W. F.
, III
,
Lee
,
J. Y.
, and
Kang
,
J. D.
,
2011
, “
Validation of a Noninvasive Technique to Precisely Measure In Vivo Three-Dimensional Cervical Spine Movement
,”
Spine
36
(
6
), pp.
E393
E400
.10.1097/BRS.0b013e31820b7e2f
32.
Tashman
,
S.
, and
Anderst
,
W.
,
2003
, “
In Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,”
J. Biomech. Eng.
,
125
(
2
), pp.
238
245
.10.1115/1.1559896
33.
An
,
K. N.
,
Morrey
,
B. F.
, and
Chao
,
E. Y.
,
1984
, “
Carrying Angle of the Human Elbow Joint
,”
J. Orthop. Res.
,
1
(
4
), pp.
369
378
.10.1002/jor.1100010405
34.
Chao
,
E. Y.
, and
Morrey
,
B. F.
,
1978
, “
Three-Dimensional Rotation of the Elbow
,”
J. Biomech.
,
11
(
1–2
), pp.
57
73
.10.1016/0021-9290(78)90044-1
35.
ASTM
,
1996
, “
Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
,”
West Conshohocken, PA
.
36.
Amis
,
A. A. D. D.
,
Unsworth
,
A.
,
Miller
,
J. H.
, and
Wright
,
V.
,
1977
, “
An Examination of the Elbow Articulation With Particular Reference to Variation of the Carrying Angle
,”
Eng. Med.
,
6
, pp.
76
80
.10.1243/EMED_JOUR_1977_006_021_02
37.
An
,
K. N. M.
, and
Morrey
,
B. F.
,
2000
, “
Biomechanics of the Elbow
,”
The Elbow and its Disorders
,
B. F.
Morrey
, ed.,
WB Saunders
,
Philadelphia
, pp.
43
60
.
38.
Boone
,
D. C.
, and
Azen
,
S. P.
,
1979
, “
Normal Range of Motion of Joints in Male Subjects
,”
J. Bone Joint Surg. Am.
,
61
(
5
), pp.
756
759
.
39.
Youm
,
Y. D. R. F.
,
Thambylajah
,
K.
,
Flatt
,
A. E.
, and
Sprague
,
B. L.
,
1979
, “
Biomechanical Analysis of Forearm: Pronation-Supination and Elbow Flexion-Extension
,”
J. Biomech.
,
12
, pp.
245
255
.10.1016/0021-9290(79)90067-8
40.
Paraskevas
,
G.
,
Papadopoulos
,
A.
,
Papaziogas
,
B.
,
Spanidou
,
S.
,
Argiriadou
,
H.
, and
Gigis
,
J.
,
2004
, “
Study of the Carrying Angle of the Human Elbow Joint in Full Extension: A Morphometric Analysis
,”
Surg. Radiol. Anat.
,
26
(
1
), pp.
19
23
.10.1007/s00276-003-0185-z
41.
Yilmaz
,
E.
,
Karakurt
,
L.
,
Belhan
,
O.
,
Bulut
,
M.
,
Serin
,
E.
, and
Avci
,
M.
,
2005
, “
Variation of Carrying Angle With Age, Sex, and Special Reference to Side
,”
Orthopedics
,
28
(
11
), pp.
1360
1363
.
42.
Zampagni
,
M. L.
,
Casino
,
D.
,
Martelli
,
S.
,
Visani
,
A.
, and
Marcacci
,
M.
,
2008
, “
A Protocol for Clinical Evaluation of the Carrying Angle of the Elbow by Anatomic Landmarks
,”
J. Shoulder Elbow Surg.
,
17
(
1
), pp.
106
112
.10.1016/j.jse.2007.03.028
43.
Hurbanek
,
J. G.
,
Anderson
,
K.
,
Crabtree
,
S.
, and
Karnes
,
G. J.
,
2009
, “
Biomechanical Comparison of the Docking Technique With and Without Humeral Bioabsorbable Interference Screw Fixation
,”
Am. J. Sports Med.
,
37
(
3
), pp.
526
533
.10.1177/0363546508326986
44.
Rijke
,
A. M.
,
Goitz
,
H. T.
,
McCue
,
F. C.
,
Andrews
,
J. R.
, and
Berr
,
S. S.
,
1994
, “
Stress Radiography of the Medial Elbow Ligaments
,”
Radiology
,
191
(
1
), pp.
213
216
.
You do not currently have access to this content.