Pulse wave imaging (PWI) is an ultrasound-based method for noninvasive characterization of arterial stiffness based on pulse wave propagation. Reliable numerical models of pulse wave propagation in normal and pathological aortas could serve as powerful tools for local pulse wave analysis and a guideline for PWI measurements in vivo. The objectives of this paper are to (1) apply a fluid-structure interaction (FSI) simulation of a straight-geometry aorta to confirm the Moens-Korteweg relationship between the pulse wave velocity (PWV) and the wall modulus, and (2) validate the simulation findings against phantom and in vitro results. PWI depicted and tracked the pulse wave propagation along the abdominal wall of canine aorta in vitro in sequential Radio-Frequency (RF) ultrasound frames and estimates the PWV in the imaged wall. The same system was also used to image multiple polyacrylamide phantoms, mimicking the canine measurements as well as modeling softer and stiffer walls. Finally, the model parameters from the canine and phantom studies were used to perform 3D two-way coupled FSI simulations of pulse wave propagation and estimate the PWV. The simulation results were found to correlate well with the corresponding Moens-Korteweg equation. A high linear correlation was also established between PWV2 and E measurements using the combined simulation and experimental findings (R2 = 0.98) confirming the relationship established by the aforementioned equation.

References

References
1.
Safar
,
M.
, 1989, “
Pulse Pressure in Essential Hypertension: Clinical and Therapeutical Implications
,”
Hypertension
,
7
(
10
), pp.
769
776
.
2.
Sutton-Tyrrell
,
K.
,
Najjar
,
S.
,
Boudreau
,
R.
,
Venkitachalam
,
L.
,
Kupelian
,
V.
,
Simonsick
,
E.
,
Havlik
,
R.
,
Lakatta
,
E.
,
Spurgeon
,
H.
,
Kritchevsky
,
S.
,
Pahor
,
M.
,
Bauer
,
D.
, and
Newman
,
A.
, 2005, “
Elevated Aortic Pulse Wave Velocity, a Marker of Arterial Stiffness, Predicts Cardiovascular Events in Well-Functioning Older Adults
,”
Circulation
,
111
(
25
), pp.
3384
3390
.
3.
Laurent
,
S.
,
Cockcroft
,
J.
,
Van Bortel
,
L.
,
Boutouyrie
,
P.
,
Giannattasio
,
C.
,
Hayoz
,
D.
,
Pannier
,
B.
,
Vlachopoulos
,
C.
,
Wilkinson
,
I.
, and
Struijker-Boudier
,
H.
, 2006, “
Expert Consensus Document on Arterial Stiffness: Methodological Issues and Clinical Applications
,”
Eur. Heart J.
,
27
(
21
), pp.
2588
2605
.
4.
Korteweg
,
D.
, 1878, “
Uber Die Fortpflanzungsgeschwindigkeit Des Schalles in Elastiischen Rohren
,”
Ann. Phys. Chem.
,
5
, pp.
52
537
.
5.
Fung
,
Y.
, 1997,
Biomechanics: Circulation
,
Springer-Verlag
,
New York, NY
.
6.
Olufsen
,
M.
, 1999, “
Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol., Heart Circ. Physiol.
,
276
(
1
), pp.
H257
H268
.
7.
Nichols
,
W.
, and
O’Rourke
,
M.
, 2005,
McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
,
Hodder Arnold Publication
,
London, UK
.
8.
Pannier
,
B.
,
Avolio
,
A.
,
Hoeks
,
A.
,
Mancia
,
G.
, and
Takazawa
,
K.
, 2002, “
Methods and Devices for Measuring Arterial Compliance in Humans
,”
Am. J. Hypertens.
,
15
(
8
), pp.
743
753
.
9.
Davies
,
J.
, and
Struthers
,
A.
, 2003, “
Pulse Wave Analysis and Pulse Wave Velocity: A Critical Review of Their Strengths and Weaknesses
,”
Hypertension
,
21
(
3
), pp.
463
472
.
10.
Vappou
,
J.
,
Luo
,
J.
, and
Konofagou
,
E.
, 2010, “
Pulse Wave Imaging for Noninvasive and Quantitative Measurement of Arterial Stiffness In Vivo
,”
Am. J. Hypertens.
,
23
(
4
), pp.
393
398
.
11.
Shahmirzadi
,
D.
, and
Konofagou
,
E.
, 2012, “
Detection of Aortic Wall Inclusions Using Regional Pulse Wave Propagation and Velocity in Silico
,”
Artery Res.
,
6
(
3
), pp.
114
123
.
12.
Segers
,
P.
,
Kips
,
J.
,
Trachet
,
B.
,
Swillens
,
A.
,
Vermeersch
,
S.
,
Mahieu
,
D.
,
Rietzschel
,
E.
,
De Buyzere
,
M.
,
Van Bortel
,
L.
, 2009, “
Limitations and Pitfalls of Non-Invasive Measurement of Arterial Pressure Wave Reflections and Pulse Wave Velocity
,”
Artery Res.
,
3
(
2
), pp.
79
88
.
13.
Brands
,
P.
,
Willigers
,
J.
,
Ledoux
,
L.
,
Reneman
,
R.
, and
Hoeks
,
A.
, 1998, “
A Noninvasive Method to Estimate Pulse Wave Velocity in Arteries Locally by Means of Ultrasound
,”
Ultrasound Med. Biol.
,
24
(
9
), pp.
1325
1335
.
14.
Hoctor
,
R.
,
Dentinger
,
A.
, and
Thomenius
,
K.
, 2007, “
Array Signal Processing for Local Arterial Pulse Wave Velocity Measurement Using Ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
5
), pp.
1018
1027
.
15.
Bolster
,
B.
,
Atalar
,
E.
,
Hardy
,
C.
, and
McVeigh
,
E.
, 1998, “
Accuracy of Arterial Pulse-Wave Velocity Measurement Using MR
,”
Magn. Reson. Imaging
,
8
(
4
), pp.
878
888
.
16.
Shao
,
X.
,
Fei
,
D.
, and
Kraft
,
K.
, 2004, “
Computer-Assisted Evaluation of Aortic Stiffness Using Data Acquired via Magnetic Resonance
,”
Comput. Med. Imaging Graph.
,
28
(
6
), pp.
353
361
.
17.
Fujikura
,
K.
,
Luo
,
J.
,
Gamarnik
,
V.
,
Pernot
,
M.
,
Fukumoto
,
R.
,
Tilson
,
M.
, and
Konofagou
,
E.
, 2007, “
A Novel Noninvasive Technique for Pulse-Wave Imaging and Characterization of Clinically-Significant Vascular Mechanical Properties In Vivo
,”
Ultrason. Imaging
,
29
(
3
), pp.
137
154
, available at: http://orion.bme.columbia.edu/ueil/documents/article/2007-fujikura-pwi-technique.pdf
18.
Vappou
,
J.
,
Luo
,
J.
, and
Konofagou
,
E.
, 2010, “
Regional Measurement of Arterial Stiffness Using Pulse Wave Imaging: Phantom Validation and Preliminary Clinical Results
,” Proceedings of the IEEE Ultrasonics Symposium,
San Diego, CA
, pp.
1332
1335
.
19.
Li
,
R.
,
Luo
,
J.
,
Balaram
,
S.
,
Chaudhry
,
F.
,
Lantis
,
J.
,
Shahmirzadi
,
D.
, and
Konofagou
,
E.
, 2011, “
In Vivo Application of Pulse Wave Imaging for Arterial Stiffness Measurement Under Normal and Pathological Conditions
,” 33rd Annual International IEEE EMBS Conference,
Boston, MA
, pp.
567
570
.
20.
Vappou
,
J.
,
Luo
,
J.
,
Okajima
,
K.
,
Tullio
,
M.
, and
Konofagou
,
E.
, 2011, “
Aortic Pulse Wave Velocity Measured by Pulse Wave Imaging (PWI): A Comparison With Applanation Tonometry
,”
Artery Res.
,
5
(
2
), pp.
65
71
.
21.
Leung
,
J. H.
,
Wright
,
A. R.
,
Cheshire
,
N.
,
Crane
,
J.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Xu
,
Y.
, 2006, “
Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: A Comparison With Solid Stress Models
,”
Biomed. Eng. Online
,
5
(
33
), pp.
1
15
.
22.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
McAfee
,
M. A.
, and
Baldwin
,
A. L.
, 1993, “
Finite Element Models for Arterial Wall Mechanics
,”
J. Biomech. Eng.
,
115
(
4B
), pp.
489
496
.
23.
Rissland
,
P.
,
Alemu
,
Y.
,
Einav
,
S.
,
Ricotta
,
J.
, and
Bluestein
,
D.
, 2009, “
Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model
,”
ASME J. Biomech. Eng.
,
131
(
3
), pp.
031001
.
24.
Kelly
,
S. C.
, and
O’Rourke
,
M. J.
, 2011, “
A Two-System, Single-Analysis, Fluid-Structure Interaction Technique for Modelling Abdominal Aortic Aneurysms
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
224
(
8
), pp.
955
969
.
25.
Scotti
,
C. M.
,
Jimenez
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
, 2008, “
Wall Stress and Flow Dynamics in Abdominal Aortic Aneurysms: Finite Element Analysis vs. Fluid-Structure Interaction
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
3
), pp.
301
322
.
26.
Vappou
,
J.
,
Zervantonakis
,
I.
,
Luo
,
J.
, and
Konofagou
,
E. E.
, 2008, “
Finite Element Modeling of the Pulse Wave Propagation in the Aorta for Simulation of the Pulse Wave Imaging (PWI) Method
,” Computational Biomechanics for Medicine (MICCAI 2008 Workshop), New York, NY, pp. 118–127.
27.
Cox
,
R.
, 1975, “
Anisotropic Properties of the Canine Carotid Artery In Vitro
,”
Biomechanics
,
8
(
5
), pp.
293
300
.
28.
Lide
,
D.
, 2008,
CRC Handbook of Chemistry and Physics
,
89th ed.
,
Taylor & Francis Publishing
,
New York, NY
.
29.
Kaatze
,
U.
, 1995, “
Fundamentals of Microwaves
,”
Radiat. Phys. Chem.
,
45
(
4
), pp.
539
548
.
30.
Moens
,
A.
, 1878,
Die Pulskurve [the Pulse Curve]
,
E. J.
Brill
., ed.,
Leiden
,
The Netherlands
.
31.
Bubenik
,
L. J.
,
Hosgood
,
G.
, and
Vasanjee
,
S. C.
, 2005, “
Bursting Tension of Medium and Large Canine Arteries Sealed With Ultrasonic Energy or Suture Ligation
,”
Vet. Surg.
,
34
(
3
), pp.
289
293
.
32.
Sato
,
M.
,
Hayashi
,
K.
,
Niimi
,
H.
,
Moritake
,
K.
,
Okumura
,
A.
, and
Handa
,
H.
, 1979, “
Axial Mechanical Properties of Arterial Walls and Their Anisotropy
,”
Med. Biol. Eng. Comput.
,
17
(
2
), pp.
170
176
.
33.
Fischer
,
G.
, and
Llaurado
,
J.
, 1966, “
Collagen and Elastin Content in Canine Arteries Selected from Functionally Different Vascular Beds
,”
Circ. Res.
,
19
(
2
), pp.
394
399
.
34.
Luo
,
J.
, and
Konofagou
,
E.
, 2010, “
A Fast Normalized Cross-Correlation Calculation Method for Motion Estimation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
57
(
6
), pp.
1347
1357
.
35.
Geissler
,
E.
, and
Hecht
,
A. M.
, 1980, “
The Poisson’s Ratio in Polymer Gels
,”
Macromolecules
,
13
(
5
), pp.
1276
1280
.
You do not currently have access to this content.