The viscoelastic behavior of tendons has been extensively studied in vitro. A noninvasive method by which to acquire mechanical data would be highly beneficial, as it could lead to the collection of viscoelastic data in vivo. Our lab has previously presented acoustoelasticity as an alternative ultrasound-based method of measuring tendon stress and strain by reporting a relationship between ultrasonic echo intensity (B mode ultrasound image brightness) and mechanical behavior of tendon under pseudoelastic in vitro conditions [Duenwald, S., Kobayashi, H., Frisch, K., Lakes, R., and Vanderby Jr, R., 2011, “Ultrasound Echo is Related to Stress and Strain in Tendon,” J. Biomech., 44(3), pp. 424–429]. Viscoelastic properties of the tendons were not examined in that study, so the presence of time-dependent echo intensity changes has not been verified. In this study, porcine flexor tendons were subjected to relaxation and cyclic testing while ultrasonic echo response was recorded. We report that time- and strain history-dependent mechanical properties during viscoelastic testing are manifested in ultrasonic echo intensity changes. We also report that the patterns of the echo intensity changes do not directly mimic the patterns of viscoelastic load changes, but the intensity changed in a repeatable (and therefore predictable) fashion. Although mechanisms need further elucidation, viscoelastic behavior can be anticipated from echo intensity changes. This phenomenon could potentially lead to a more extensive characterization of in vivo tissue behavior.

References

References
1.
Ker
,
R. F.
,
Bennett
,
M. B.
,
Bibby
,
S. R.
,
Kester
,
R. C.
, and
Alexander
,
R. M.
, 1987, “
The Spring in the Arch of the Human Foot
,”
Nature
,
325
(
6100
), pp.
147
149
.
2.
Hingorani
,
R. V.
,
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Escarcega
,
A.
, and
Vanderby
,
R.
, Jr.
, 2004, “
Nonlinear Viscoelasticity in Rabbit Medial Collateral Ligament
,”
Ann. Biomed. Eng.
,
32
(
2
), pp.
306
312
.
3.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
, Jr.
, 2001, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
908
914
.
4.
Rumian
,
A. P.
,
Wallace
,
A. L.
, and
Birch
,
H. L.
, 2007, “
Tendons and Ligaments Are Anatomically Distinct But Overlap in Molecular and Morphological Features—A Comparative Study in an Ovine Model
,”
J. Orthop. Res.
,
25
(
4
), pp.
458
464
.
5.
Woo
,
S. L.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
, 1981, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medical Collateral Ligament
,”
J. Biomech. Eng.
,
103
(
4
), pp.
293
298
.
6.
Bonifasi-Lista
,
C.
,
Lakez
,
S. P.
,
Small
,
M. S.
, and
Weiss
,
J. A.
, 2005, “
Viscoelastic Properties of the Human Medial Collateral Ligament Under Longitudinal, Transverse and Shear Loading
,”
J. Orthop. Res.
,
23
(
1
), pp.
67
76
.
7.
Dommelen
,
J. A. W.
,
Jolandan
,
M. M.
,
Ivarsson
,
B. J.
,
Millington
,
S. A.
,
Raut
,
M.
,
Kerrigan
,
J. R.
,
Crandall
,
J. R.
, and
Diduch
,
D. R.
, 2006, “
Nonlinear Viscoelastic Behavior of Human Knee Ligaments Subjected to Complex Loading Histories
,”
Ann. Biomed. Eng.
,
34
(
6
), pp.
1008
1018
.
8.
Heimdal
,
A.
,
Støylen
,
A.
,
Torp
,
H.
, and
Skjærpe
,
T.
, 1998, “
Real-Time Strain Rate Imaging of the Left Ventricle by Ultrasound
,”
J. Am. Soc. Echocardiogr.
,
11
(
11
), pp.
1013
1019
.
9.
D’hooge
,
J.
,
Heimdal
,
A.
,
Jamal
,
F.
,
Kukulski
,
T.
,
Bijnens
,
B.
,
Rademakers
,
F.
,
Hatle
,
L.
,
Suetens
,
P.
, and
Sutherland
,
G. R.
, 2000, “
Regional Strain and Strain Rate Measurements by Cardiac Ultrasound: Principles, Implementation and Limitations
,”
Eur. J. Echocardiogr.
,
1
(
3
), pp.
154
170
.
10.
Ophir
,
J.
,
Céspedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
, 1991, “
Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultrason. Imaging
,
13
(
2
), pp.
111
134
.
11.
Ophir
,
J.
,
Cespedes
,
I.
,
Garra
,
B.
,
Ponnekanti
,
H.
,
Huang
,
Y.
, and
Maklad
,
N.
, 1996, “
Elastography: Ultrasonic Imaging of Tissue Strain and Elastic Modulus In Vivo
,”
Eur. J. Ultrasound
,
3
(
1
), pp.
49
70
.
12.
Itoh
,
A.
,
Ueno
,
E.
,
Tohno
,
E.
,
Kamma
,
H.
,
Takahashi
,
H.
,
Shiina
,
T.
,
Yamakawa
,
M.
, and
Matsumura
,
T.
, 2006, “
Breast Disease: Clinical Application of US Elastography for Diagnosis1
,”
Radiology
,
239
(
2
), pp.
341
350
.
13.
Crevier-Denoix
,
N.
,
Ravary-Plumioën
,
B.
,
Evrard
,
D.
, and
Pourcelot
,
P.
, 2009, “
Reproducibility of a Non-Invasive Ultrasonic Technique of Tendon Force Measurement, Determined In Vitro in Equine Superficial Digital Flexor Tendons
,”
J. Biomech.
,
42
(
13
), pp.
2210
2213
.
14.
Arda
,
K.
,
Ciledag
,
N.
,
Aktas
,
E.
,
Arıbas
,
B. K.
, and
Köse
,
K.
, 2011, “
Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography
,”
Am. J. Roentgenol.
,
197
(
3
), pp.
532
536
.
15.
Catheline
,
S.
,
Gennisson
,
J.-L.
, and
Fink
,
M.
, 2003, “
Measurement of Elastic Nonlinearity of Soft Solid With Transient Elastography
,”
J. Acoust. Soc. Am.
,
114
(
6
), p.
3087
3091
.
16.
Evans
,
A.
,
Whelehan
,
P.
,
Thomson
,
K.
,
McLean
,
D.
,
Brauer
,
K.
,
Purdie
,
C.
,
Jordan
,
L.
,
Baker
,
L.
, and
Thompson
,
A.
, 2010, “
Quantitative Shear Wave Ultrasound Elastography: Initial Experience in Solid Breast Masses
,”
Breast Cancer Res
,
12
(
6
), p.
R104
.
17.
Sebag
,
F.
,
Vaillant-Lombard
,
J.
,
Berbis
,
J.
,
Griset
,
V.
,
Henry
,
J. F.
,
Petit
,
P.
, and
Oliver
,
C.
, 2010, “
Shear Wave Elastography: A New Ultrasound Imaging Mode for the Differential Diagnosis of Benign and Malignant Thyroid Nodules
,”
J. Clin. Endocrinol. Metabolism
,
95
(
12
), pp.
5281
5288
.
18.
Hughes
,
D.
, and
Kelly
,
J.
, 1953, “
Second-Order Elastic Deformation of Solids
,”
Phys. Rev.
,
92
(
5
), pp.
1145
1149
.
19.
Kobayashi
,
H.
, and
Vanderby
,
R.
, 2005, “
New Strain Energy Function for Acoustoelastic Analysis of Dilatational Waves in Nearly Incompressible, Hyper-Elastic Materials
,”
J. Appl. Mech.
,
72
(
6
), pp.
843
851
.
20.
Kobayashi
,
H.
, and
Vanderby
,
R.
, 2007, “
Acoustoelastic Analysis of Reflected Waves in Nearly Incompressible, Hyper-Elastic Materials: Forward and Inverse Problems
,”
J. Acoust. Soc. Am.
,
121
(
2
), pp.
879
887
.
21.
Duenwald
,
S.
,
Kobayashi
,
H.
,
Frisch
,
K.
,
Lakes
,
R.
, and
Vanderby
, Jr.,
R.
, 2011, “
Ultrasound Echo is Related to Stress and Strain in Tendon
,”
J. Biomech.
,
44
(
3
), pp.
424
429
.
22.
Pan
,
L.
,
Zan
,
L.
, and
Foster
,
F. S.
, 1998, “
Ultrasonic and Viscoelastic Properties of Skin Under Transverse Mechanical Stress In Vitro
,”
Ultrasound Medicine Biol.
,
24
(
7
), pp.
995
1007
.
23.
Duenwald
,
S. E.
,
Vanderby
,
R.
, and
Lakes
,
R. S.
, 2010, “
Stress Relaxation and Recovery in Tendon and Ligament: Experiment and Modeling
,”
Biorheology
,
47
(
1
), pp.
1
14
.
24.
Duenwald
,
S. E.
,
Vanderby
,
R.
, and
Lakes
,
R. S.
, 2009, “
Viscoelastic Relaxation and Recovery of Tendon
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1131
1140
.
25.
Abrahams
,
M.
, 1967, “
Mechanical Behaviour of Tendon In Vitro
,”
Med. Biol. Eng.
,
5
(
5
), pp.
433
443
.
26.
Rigby
,
B. J.
,
Hirai
,
N.
,
Spikes
,
J. D.
, and
Eyring
,
H.
, 1959, “
The Mechanical Properties of Rat Tail Tendon
,”
J. Gen. Physiol.
,
43
(
2
), pp.
265
283
.
27.
Han
,
S.
,
Gemmell
,
S. J.
,
Helmer
,
K. G.
,
Grigg
,
P.
,
Wellen
,
J. W.
,
Hoffman
,
A. H.
, and
Sotak
,
C. H.
, 2000, “
Changes in ADC Caused by Tensile Loading of Rabbit Achilles Tendon: Evidence for Water Transport
,”
J. Magn. Reson.
,
144
(
2
), pp.
217
227
.
28.
Hannafin
,
J. A.
, and
Arnoczky
,
S. P.
, 1994, “
Effect of Cyclic and Static Tensile Loading on Water Content and Solute Diffusion in Canine Flexor Tendons: An In Vitro Study
,”
J. Orthop. Res.
,
12
(
3
), pp.
350
356
.
29.
Helmer
,
K. G.
,
Wellen
,
J.
,
Grigg
,
P.
, and
Sotak
,
C. H.
, 2004, “
Measurement of the Spatial Redistribution of Water in Rabbit Achilles Tendon in Response to Static Tensile Loading
,”
J. Biomech. Eng.
,
126
(
5
), pp.
651
656
.
30.
Itoh
,
A.
,
Ueno
,
E.
,
Tohno
,
E.
,
Kamma
,
H.
,
Takahashi
,
H.
,
Shiina
,
T.
,
Yamakawa
,
M.
, and
Matsumura
,
T.
, 2006, “
Breast Disease: Clinical Application of US Elastography for Diagnosis
,”
Radiology
,
239
, pp.
341
350
.
31.
Zhi
,
H.
,
Ou
,
B.
,
Luo
,
B. M.
,
Feng
,
X.
,
Wen
,
Y. L.
, and
Yang
,
H.Y.
, 2007, “
Comparison of Ultrasound Elastography Mammography and Sonography in the Diagnosis of Solid Breast Lesions
,”
J. Ultrasound Med.
,
26
(
6
), pp.
807
815
. Available at http://www.jultrasoundmed.org/content/26/6/807.short
You do not currently have access to this content.