Unilateral below-knee amputees develop abnormal gait characteristics that include bilateral asymmetries and an elevated metabolic cost relative to non-amputees. In addition, long-term prosthesis use has been linked to an increased prevalence of joint pain and osteoarthritis in the intact leg knee. To improve amputee mobility, prosthetic feet that utilize elastic energy storage and return (ESAR) have been designed, which perform important biomechanical functions such as providing body support and forward propulsion. However, the prescription of appropriate design characteristics (e.g., stiffness) is not well-defined since its influence on foot function and important in vivo biomechanical quantities such as metabolic cost and joint loading remain unclear. The design of feet that improve these quantities could provide considerable advancements in amputee care. Therefore, the purpose of this study was to couple design optimization with dynamic simulations of amputee walking to identify the optimal foot stiffness that minimizes metabolic cost and intact knee joint loading. A musculoskeletal model and distributed stiffness ESAR prosthetic foot model were developed to generate muscle-actuated forward dynamics simulations of amputee walking. Dynamic optimization was used to solve for the optimal muscle excitation patterns and foot stiffness profile that produced simulations that tracked experimental amputee walking data while minimizing metabolic cost and intact leg internal knee contact forces. Muscle and foot function were evaluated by calculating their contributions to the important walking subtasks of body support, forward propulsion and leg swing. The analyses showed that altering a nominal prosthetic foot stiffness distribution by stiffening the toe and mid-foot while making the ankle and heel less stiff improved ESAR foot performance by offloading the intact knee during early to mid-stance of the intact leg and reducing metabolic cost. The optimal design also provided moderate braking and body support during the first half of residual leg stance, while increasing the prosthesis contributions to forward propulsion and body support during the second half of residual leg stance. Future work will be directed at experimentally validating these results, which have important implications for future designs of prosthetic feet that could significantly improve amputee care.

References

References
1.
Sanderson
,
D. J.
, and
Martin
,
P. E.
, 1997, “
Lower Extremity Kinematic and Kinetic Adaptations in Unilateral Below-Knee Amputees During Walking
,”
Gait and Posture
,
6
, pp.
126
136
.
2.
Winter
,
D. A.
, and
Sienko
,
S. E.
, 1988, “
Biomechanics of Below-Knee Amputee Gait
,”
J. Biomech.
,
21
(
5
), pp.
361
367
.
3.
Waters
,
R. L.
,
Perry
,
J.
,
Antonelli
,
D.
, and
Hislop
,
H.
, 1976, “
Energy Cost of Walking of Amputees: The Influence of Level of Amputation
,”
J. Bone Jt. Surg. Am.
,
58
(
1
), pp.
42
46
. Available at http://www.ncbi.nlm.nih.gov/pubmed/1249111
4.
Robinson
,
J. L.
,
Smidt
,
G. L.
, and
Arora
,
J. S.
, 1977, “
Accelerographic, Temporal, and Distance Gait Factors in Below-Knee Amputees
,”
Phys. Ther.
,
57
(
8
), pp.
898
904
. Available at http://www.ncbi.nlm.nih.gov/pubmed/877157
5.
Kulkarni
,
J.
,
Gaine
,
W. J.
,
Buckley
,
J. G.
,
Rankine
,
J. J.
, and
Adams
,
J.
, 2005, “
Chronic Low Back Pain in Traumatic Lower Limb Amputees
,”
Clin. Rehabil.
,
19
(
1
), pp.
81
86
.
6.
Ephraim
,
P. L.
,
Wegener
,
S. T.
,
Mackenzie
,
E. J.
,
Dillingham
,
T. R.
, and
Pezzin
,
L. E.
, 2005, “
Phantom Pain, Residual Limb Pain, and Back Pain in Amputees: Results of a National Survey
,”
Arch. Phys. Med. Rehabil.
,
86
(
10
), pp.
1910
1919
.
7.
Smith
,
D. G.
,
Ehde
,
D. M.
,
Legro
,
M. W.
,
Reiber
,
G. E.
,
Del Aguila
,
M.
, and
Boone
,
D. A.
, 1999, “
Phantom Limb, Residual Limb, and Back Pain After Lower Extremity Amputations
,”
Clin. Orthop. Relat. Res.
,
361
, pp.
29
38
.
8.
Burke
,
M. J.
,
Roman
,
V.
, and
Wright
,
V.
, 1978, “
Bone and Joint Changes in Lower Limb Amputees
,”
Ann. Rheum. Dis.
,
37
(
3
), pp.
252
254
.
9.
Gailey
,
R.
,
Allen
,
K.
,
Castles
,
J.
,
Kucharik
,
J.
, and
Roeder
,
M.
, 2008, “
Review of Secondary Physical Conditions Associated With Lower-Limb Amputation and Long-Term Prosthesis Use
,”
J. Rehabil. Res. Dev.
,
45
(
1
), pp.
15
29
.
10.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
, 2001, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.
11.
Hafner
,
B. J.
,
Sanders
,
J. E.
,
Czerniecki
,
J. M.
, and
Fergason
,
J.
, 2002, “
Transtibial Energy-Storage-and-Return Prosthetic Devices: A Review of Energy Concepts and a Proposed Nomenclature
,”
J. Rehabil. Res. Dev.
,
39
(
1
), pp.
1
11
. Available at http://www.ncbi.nlm.nih.gov/pubmed/11926321
12.
Liu
,
M. Q.
,
Anderson
,
F. C.
,
Pandy
,
M. G.
, and
Delp
,
S. L.
, 2006, “
Muscles That Support the Body Also Modulate Forward Progression During Walking
,”
J. Biomech.
,
39
(
14
), pp.
2623
2630
.
13.
Neptune
,
R. R.
,
Zajac
,
F. E.
, and
Kautz
,
S. A.
, 2004, “
Muscle Force Redistributes Segmental Power for Body Progression During Walking
,”
Gait and Posture
,
19
(
2
), pp.
194
205
.
14.
Neptune
,
R. R.
, and
Kautz
,
S. A.
, 2000, “
Knee Joint Loading in Forward versus Backward Pedaling: Implications for Rehabilitation Strategies
,”
Clin. Biomech. (Bristol, Avon)
,
15
(
7
), pp.
528
535
.
15.
Sasaki
,
K.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
, 2009, “
The Relationships Between Muscle, External, Internal and Joint Mechanical Work During Normal Walking
,”
J. Exp. Biol.
,
212
(
Pt 5
), pp.
738
744
.
16.
Sasaki
,
K.
, and
Neptune
,
R. R.
, 2010, “
Individual Muscle Contributions to the Axial Knee Joint Contact Force During Normal Walking
,”
J. Biomech.
,
43
(
14
), pp.
2780
2784
.
17.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
, 2005, “
Muscle, Ligament, and Joint-Contact Forces at the Knee During Walking
,”
Med. Sci. Sports Exercise
,
37
(
11
), pp.
1948
1956
.
18.
Umberger
,
B. R.
, 2010, “
Stance and Swing Phase Costs in Human Walking
,”
J. R. Soc., Interface
,
7
(
50
), pp.
1329
1340
.
19.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
, 2011, “
The Influence of Energy Storage and Return Foot Stiffness on Walking Mechanics and Muscle Activity in Below-Knee Amputees
,”
Clin. Biomech. (Bristol, Avon)
,
26
(
10
), pp.
1025
1032
.
20.
Ventura
,
J. D.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
, 2011, “
The Effects of Prosthetic Ankle Dorsiflexion and Energy Return on Below-Knee Amputee Leg Loading
,”
Clin. Biomech. (Bristol, Avon)
,
26
(
3
), pp.
298
303
.
21.
Ventura
,
J. D.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
, 2011, “
The Effect of Prosthetic Ankle Energy Storage and Return Properties on Muscle Activity in Below-Knee Amputee Walking
,”
Gait and Posture
,
33
(
2
), pp.
220
226
.
22.
Zmitrewicz
,
R. J.
,
Neptune
,
R. R.
, and
Sasaki
,
K.
, 2007, “
Mechanical Energetic Contributions From Individual Muscles and Elastic Prosthetic Feet During Symmetric Unilateral Transtibial Amputee Walking: A Theoretical Study
,”
J. Biomech.
,
40
(
8
), pp.
1824
1831
.
23.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
, 1990, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.
24.
Mattes
,
S. J.
,
Martin
,
P. E.
, and
Royer
,
T. D.
, 2000, “
Walking Symmetry and Energy Cost in Persons With Unilateral Transtibial Amputations: Matching Prosthetic and Intact Limb Inertial Properties
,”
Arch. Phys. Med. Rehabil.
,
81
(
5
), pp.
561
568
.
25.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
, 1989, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
,
22
(
1
), pp.
1
10
.
26.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
Van Den Bogert
,
A. J.
, 2000, “
A Method for Numerical Simulation of Single Limb Ground Contact Events: Application to Heel-Toe Running
,”
Comput. Methods Biomech. Biomed. Eng.
,
3
(
4
), pp.
321
334
.
27.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 1999, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comput. Methods Biomech. Biomed. Eng.
,
2
(
3
), pp.
201
231
.
28.
Davy
,
D. T.
, and
Audu
,
M. L.
, 1987, “
A Dynamic Optimization Technique for Predicting Muscle Forces in the Swing Phase of Gait
,”
J. Biomech.
,
20
(
2
), pp.
187
201
.
29.
Hall
,
A. L.
,
Peterson
,
C. L.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
, 2011, “
Relationships Between Muscle Contributions to Walking Subtasks and Functional Walking Status in Persons With Post-Stroke Hemiparesis
,”
Clin. Biomech. (Bristol, Avon)
,
26
(
5
), pp.
509
515
.
30.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
. Available at http://www.ncbi.nlm.nih.gov/pubmed/2676342
31.
Raasch
,
C. C.
,
Zajac
,
F. E.
,
Ma
,
B.
, and
Levine
,
W. S.
, 1997, “
Muscle Coordination of Maximum-Speed Pedaling
,”
J. Biomech.
,
30
(
6
), pp.
595
602
.
32.
Winters
,
J. M.
, and
Stark
,
L.
, 1988, “
Estimated Mechanical Properties of Synergistic Muscles Involved in Movements of a Variety of Human Joints
,”
J. Biomech.
,
21
(
12
), pp.
1027
1041
.
33.
Umberger
,
B. R.
,
Gerritsen
,
K. G.
, and
Martin
,
P. E.
, 2003, “
A Model of Human Muscle Energy Expenditure
,”
Comput. Methods Biomech. Biomed. Eng.
,
6
(
2
), pp.
99
111
.
34.
South
,
B. J.
,
Fey
,
N. P.
,
Bosker
,
G.
, and
Neptune
,
R. R.
, 2010, “
Manufacture of Energy Storage and Return Prosthetic Feet Using Selective Laser Sintering
,”
J. Biomech. Eng.
,
132
(
1
), p.
015001
.
35.
Goffe
,
W. L.
,
Ferrier
,
G. D.
, and
Rogers
,
J.
, 1994, “
Global Optimization of Statistical Functions With Simulated Annealing
,”
J. Econometr.
,
60
(
1–2
), pp.
65
99
.
36.
Silverman
,
A. K.
,
Fey
,
N. P.
,
Portillo
,
A.
,
Walden
,
J. G.
,
Bosker
,
G.
, and
Neptune
,
R. R.
, 2008, “
Compensatory Mechanisms in Below-Knee Amputee Gait in Response to Increasing Steady-State Walking Speeds
,”
Gait and Posture
,
28
(
4
), pp.
602
609
.
37.
Neptune
,
R. R.
,
Sasaki
,
K.
, and
Kautz
,
S. A.
, 2008, “
The Effect of Walking Speed on Muscle Function and Mechanical Energetics
,”
Gait and Posture
,
28
(
1
), pp.
135
143
.
38.
Fregly
,
B. J.
, and
Zajac
,
F. E.
, 1996, “
A State-Space Analysis of Mechanical Energy Generation, Absorption, and Transfer During Pedaling
,”
J. Biomech.
,
29
(
1
), pp.
81
90
.
39.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
, 2009, “
Evaluation of Predicted Knee-Joint Muscle Forces During Gait Using an Instrumented Knee Implant
,”
J. Orthop. Res.
,
27
(
10
), pp.
1326
1331
.
40.
Lin
,
Y. C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
, 2010, “
Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait
,”
J. Biomech.
,
43
(
5
), pp.
945
952
.
41.
Astephen
,
J. L.
,
Deluzio
,
K. J.
,
Caldwell
,
G. E.
,
Dunbar
,
M. J.
, and
Hubley-Kozey
,
C. L.
, 2008, “
Gait and Neuromuscular Pattern Changes are Associated With Differences in Knee Osteoarthritis Severity Levels
,”
J. Biomech.
,
41
(
4
), pp.
868
876
.
42.
Childs
,
J. D.
,
Sparto
,
P. J.
,
Fitzgerald
,
G. K.
,
Bizzini
,
M.
, and
Irrgang
,
J. J.
, 2004, “
Alterations in Lower Extremity Movement and Muscle Activation Patterns in Individuals With Knee Osteoarthritis
,”
Clin. Biomech. (Bristol, Avon)
,
19
(
1
), pp.
44
49
.
43.
Deluzio
,
K. J.
, and
Astephen
,
J. L.
, 2007, “
Biomechanical Features of Gait Waveform Data Associated With Knee Osteoarthritis: An Application of Principal Component Analysis
,”
Gait and Posture
,
25
(
1
), pp.
86
93
.
44.
Zeni
,
J. A.
, Jr.
, and
Higginson
,
J. S.
, 2009, “
Differences in Gait Parameters Between Healthy Subjects and Persons With Moderate and Severe Knee Osteoarthritis: A Result of Altered Walking Speed?
,”
Clin. Biomech. (Bristol, Avon)
,
24
(
4
), pp.
372
378
.
45.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 2003, “
Individual Muscle Contributions to Support in Normal Walking
,”
Gait and Posture
,
17
(
2
), pp.
159
169
.
You do not currently have access to this content.