Scaffold-based tissue-engineered constructs as well as cell-free implants offer promising solutions to focal cartilage lesions. However, adequate mechanical stability of these implants in the lesion is required for successful repair. Fibrin is the most common clinically available adhesive for cartilage implant fixation, but fixation quality using fibrin is not well understood. The objectives of this study were to investigate the conditions leading to damage in the fibrin adhesive and to determine which adhesive properties are important in preventing delamination at the interface. An idealized finite element model of the medial compartment of the knee was created, including a circular defect and an osteochondral implant. Damage and failure of fibrin at the interface was represented by a cohesive zone model with coefficients determined from an inverse finite element method and previously published experimental data. Our results demonstrated that fibrin glue alone may not be strong enough to withstand physiologic loads in vivo while fibrin glue combined with chondrocytes more effectively prevents damage at the interface. The results of this study suggest that fibrin fails mainly in shear during off-axis loading and that adhesive materials that are stronger or more compliant than fibrin may be good alternatives due to decreased failure at the interface. The present model may be used to improve design and testing protocols of bioadhesives and give insight into the failure mechanisms of cartilage implant fixation in the knee joint.

References

References
1.
Minas
,
T.
, and
Nehrer
,
S.
, 1997, “
Current Concepts in the Treatment of Articular Cartilage Defects
,”
Orthopedics
,
20
(
6
), pp.
525
538
.
2.
Cicuttini
,
F.
,
Ding
,
C.
,
Wluka
,
A.
,
Davis
,
S.
,
Ebeling
,
P. R.
, and
Jones
,
G.
, 2005, “
Association of Cartilage Defects With Loss of Knee Cartilage in Healthy, Middle-Age Adults: A Prospective Study
,”
Arthritis. Rheum.
,
52
(
7
), pp.
2033
2039
.
3.
Ding
,
C.
,
Garnero
,
P.
,
Cicuttini
,
F.
,
Scott
,
F.
,
Cooley
,
H.
, and
Jones
,
G.
, 2005, “
Knee Cartilage Defects: Association With Early Radiographic Osteoarthritis, Decreased Cartilage Volume, Increased Joint Surface Area and Type II Collagen Breakdown
,”
Osteoarthritis Cartilage
,
13
(
3
), pp.
198
205
.
4.
Martin
,
I.
,
Miot
,
S.
,
Barbero
,
A.
,
Jakob
,
M.
, and
Wendt
,
D.
, 2007, “
Osteochondral Tissue Engineering
,”
J. Biomech.
,
40
(
4
), pp.
750
765
.
5.
Maher
,
S. A.
,
Doty
,
S. B.
,
Torzilli
,
P. A.
,
Thornton
,
S.
,
Lowman
,
A. M.
,
Thomas
,
J. D.
,
Warren
,
R.
,
Wright
,
T. M.
, and
Myers
,
E.
, 2007, “
Nondegradable Hydrogels for the Treatment of Focal Cartilage Defects
,”
J. Biomed. Mater. Res. Part A
,
83A
(
1
), pp.
145
155
.
6.
Thomas
,
B. H.
,
Craig Fryman
,
J.
,
Liu
,
K.
, and
Mason
,
J.
, 2009, “
Hydrophilic-Hydrophobic Hydrogels for Cartilage Replacement
,”
J. Mech. Behav. Biomed.
,
2
(
6
), pp.
588
595
.
7.
Coutts
,
R. D.
,
Healey
,
R. M.
,
Ostrander
,
R.
,
Sah
,
R. L.
,
Goomer
,
R.
, and
Amiel
,
D.
, 2001, “
Matrices for Cartilage Repair
,”
Clin. Orthop. Relat. Res.
, Suppl.
391
, pp.
S271
S279
.
8.
Ahmed
,
T. A.
, and
Hincke
,
M. T.
, 2010, “
Strategies for Articular Cartilage Lesion Repair and Functional Restoration
,”
Tissue Eng. Part B, Rev.
,
16
(
3
), pp.
305
329
.
9.
Knecht
,
S.
,
Erggelet
,
C.
,
Endres
,
M.
,
Sittinger
,
M.
,
Kaps
,
C.
, and
Stussi
,
E.
, 2007, “
Mechanical Testing of Fixation Techniques for Scaffold-Based Tissue-Engineered Grafts
,”
J. Biomed. Mater. Res. B
,
83
(
1
), pp.
50
57
.
10.
Drobnic
,
M.
,
Radosavljevic
,
D.
,
Ravnik
,
D.
,
Pavlovcic
,
V.
, and
Hribernik
,
M.
, 2006, “
Comparison of Four Techniques for the Fixation of a Collagen Scaffold in the Human Cadaveric Knee
,”
Osteoarthritis Cartilage
,
14
(
4
), pp.
337
344
.
11.
Nehrer
,
S.
,
Spector
,
M.
, and
Minas
,
T.
, 1999, “
Histologic Analysis of Tissue After Failed Cartilage Repair Procedures
,”
Clin. Orthop. Relat. Res.
,
365
, pp.
149
162
.
12.
Marlovits
,
S.
,
Striessnig
,
G.
,
Kutscha-Lissberg
,
F.
,
Resinger
,
C.
,
Aldrian
,
S. M.
,
Vecsei
,
V.
, and
Trattnig
,
S.
, 2005, “
Early Postoperative Adherence of Matrix-Induced Autologous Chondrocyte Implantation for the Treatment of Full-Thickness Cartilage Defects of the Femoral Condyle
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
13
(
6
), pp.
451
457
.
13.
Vahdati
,
A.
, and
Wagner
,
D. R.
,
2011
, “
Finite Element Study of a Tissue-Engineered Cartilage Transplant in Human Tibiofemoral Joint
,”
Comput. Methods Biomech. Biomed. Eng.
, (online).
14.
Silverman
,
R. P.
,
Bonasser
,
L.
,
Passaretti
,
D.
,
Randolph
,
M. A.
, and
Yaremchuk
,
M. J.
, 2000, “
Adhesion of Tissue-Engineered Cartilage to Native Cartilage
,”
Plast. Reconstr. Surg.
,
105
(
4
), pp.
1393
1398
.
15.
Sierra
,
D. H.
,
Eberhardt
,
A. W.
, and
Lemons
,
J. E.
, 2002, “
Failure Characteristics of Multiple-Component Fibrin-Based Adhesives
,”
J. Biomed. Mater. Res.
,
59
(
1
), pp.
1
11
.
16.
Liu
,
K.
,
Van Landingham
,
M. R.
, and
Ovaert
,
T. C.
, 2009, “
Mechanical Characterization of Soft Viscoelastic Gels via Indentation and Optimization-Based Inverse Finite Element Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
4
), pp.
355
363
.
17.
Koo
,
S.
, and
Andriacchi
,
T. P.
, 2007, “
A Comparison of the Influence of Global Functional Loads Vs. Local Contact Anatomy on Articular Cartilage Thickness at the Knee
,”
J. Biomech.
,
40
(
13
), pp.
2961
2966
.
18.
Mow
,
V. C.
,
Ateshian
,
G. A.
, and
Spilker
,
R. L.
, 1993, “
Biomechanics of Diarthrodial Joints: A Review of Twenty Years of Progress
,”
J. Biomech. Eng.
,
115
(
4B
), pp.
460
467
.
19.
Eberhardt
,
A. W.
,
Keer
,
L. M.
,
Lewis
,
J. L.
, and
Vithoontien
,
V.
, 1990, “
An Analytical Model of Joint Contact
,”
J. Biomech. Eng.
,
112
(
4
), p.
407
.
20.
Garcia
,
J. J.
,
Altiero
,
N. J.
, and
Haut
,
R. C.
, 1998, “
An Approach for the Stress Analysis of Transversely Isotropic Biphasic Cartilage Under Impact Load
,”
J. Biomech. Eng.
,
120
(
5
), pp.
608
613
.
21.
Kelly
,
D. J.
, and
Prendergast
,
P. J.
, 2006, “
Prediction of the Optimal Mechanical Properties for a Scaffold used in Osteochondral Defect Repair
,”
Tissue Eng.
,
12
(
9
), pp.
2509
2519
.
22.
Wong
,
M.
,
Ponticiello
,
M.
,
Kovanen
,
V.
, and
Jurvelin
,
J. S.
, 2000, “
Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression
,”
J. Biomech.
,
33
(
9
), pp.
1049
1054
.
23.
Liu
,
F.
,
Kozanek
,
M.
,
Hosseini
,
A.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
, 2010, “
In Vivo Tibiofemoral Cartilage Deformation during the Stance Phase of Gait
,”
J. Biomech.
,
43
(
4
), pp.
658
665
.
24.
Hosseini
,
A.
,
Van de Velde
,
S. K.
,
Kozanek
,
M.
,
Gill
,
T. J.
,
Grodzinsky
,
A. J.
,
Rubash
,
H. E.
, and
Li
,
G.
, 2010, “
In-Vivo Time-Dependent Articular Cartilage Contact Behavior of the Tibiofemoral Joint
,”
Osteoarthritis Cartilage
,
18
(
7
), pp.
909
916
.
25.
Paci
,
J. M.
,
Scuderi
,
M. G.
,
Werner
,
F. W.
,
Sutton
,
L. G.
,
Rosenbaum
,
P. F.
, and
Cannizzaro
,
J. P.
, 2009, “
Knee Medial Compartment Contact Pressure Increases With Release of the Type I Anterior Intermeniscal Ligament
,”
Am. J. Sports Med.
,
37
(
7
), pp.
1412
1416
.
26.
Patel
,
V. V.
,
Hall
,
K.
,
Ries
,
M.
,
Lotz
,
J.
,
Ozhinsky
,
E.
,
Lindsey
,
C.
,
Lu
,
Y.
, and
Majumdar
,
S.
, 2004, “
A Three-Dimensional MRI Analysis of Knee Kinematics
,”
J. Orthop. Res.
,
22
(
2
), pp.
283
292
.
27.
Bingham
,
J. T.
,
Papannagari
,
R.
,
Van de Velde
,
S. K.
,
Gross
,
C.
,
Gill
,
T. J.
,
Felson
,
D. T.
,
Rubash
,
H. E.
, and
Li
,
G.
, 2008, “
In Vivo Cartilage Contact Deformation in the Healthy Human Tibiofemoral Joint
,”
Rheumatology
,
47
(
11
), pp.
1622
1627
.
28.
Martin
,
I.
,
Miot
,
S.
,
Barbero
,
A.
,
Jakob
,
M.
, and
Wendt
,
D.
, 2007, “
Osteochondral Tissue Engineering
,”
J. Biomech.
,
40
(
4
), pp.
750
765
.
29.
Jurgensen
,
K.
,
Aeschlimann
,
D.
,
Cavin
,
V.
,
Genge
,
M.
, and
Hunziker
,
E. B.
, 1997, “
A New Biological Glue for Cartilage-Cartilage Interfaces: Tissue Transglutaminase
,”
J. Bone Jt. Surg.
, Am.,
79
(
2
), pp.
185
193
.
30.
Alparslan
,
L.
,
Minas
,
T.
, and
Winalski
,
C. S.
, 2001, “
Magnetic Resonance Imaging of Autologous Chondrocyte Implantation
,”
Semin. Ultrasound CT MR
,
22
(
4
), pp.
341
351
.
31.
Bekkers
,
J. E.
,
Tsuchida
,
A. I.
,
Malda
,
J.
,
Creemers
,
L. B.
,
Castelein
,
R. J.
,
Saris
,
D. B.
, and
Dhert
,
W. J.
, 2010, “
Quality of Scaffold Fixation in a Human Cadaver Knee Model
,”
Osteoarthritis Cartilage
,
18
(
2
), pp.
266
272
.
32.
Efe
,
T.
,
Schofer
,
M. D.
,
Fuglein
,
A.
,
Timmesfeld
,
N.
,
Fuchs-Winkelmann
,
S.
,
Stein
,
T.
,
El-Zayat
,
B. F.
,
Paletta
,
J. R.
, and
Heyse
,
T. J.
, 2010, “
An Ex Vivo Continuous Passive Motion Model in a Porcine Knee for Assessing Primary Stability of Cell-Free Collagen Gel Plugs
,”
BMC Musculoskelet. Disord.
,
11
, pp.
283
293
.
33.
Efe
,
T.
,
Fuglein
,
A.
,
Heyse
,
T. J.
,
Stein
,
T.
,
Timmesfeld
,
N.
,
Fuchs-Winkelmann
,
S.
,
Schmitt
,
J.
,
Paletta
,
J. R.
, and
Schofer
,
M. D.
, 2012, “
Fibrin Glue Does Not Improve the Fixation of Press-Fitted Cell-Free Collagen Gel Plugs in an Ex Vivo Cartilage Repair Model
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
20
(
2
), pp.
210
215
.
34.
Dare
,
E. V.
,
Griffith
,
M.
,
Poitras
,
P.
,
Kaupp
,
J. A.
,
Waldman
,
S. D.
,
Carlsson
,
D. J.
,
Dervin
,
G.
,
Mayoux
,
C.
, and
Hincke
,
M. T.
, 2009, “
Genipin Cross-Linked Fibrin Hydrogels for In Vitro Human Articular Cartilage Tissue-Engineered Regeneration
,”
Cells Tissues Organs
,
190
(
6
), pp.
313
325
.
35.
Schek
,
R. M.
,
Michalek
,
A. J.
, and
Iatridis
,
J. C.
, 2011, “
Genipin-Crosslinked Fibrin Hydrogels as a Potential Adhesive to Augment Intervertebral Disc Annulus Repair
,”
Eur. Cells Mater.
,
21
, pp.
373
383
.
36.
Wang
,
D. A.
,
Varghese
,
S.
,
Sharma
,
B.
,
Strehin
,
I.
,
Fermanian
,
S.
,
Gorham
,
J.
,
Fairbrother
,
D. H.
,
Cascio
,
B.
, and
Elisseeff
,
J. H.
, 2007, “
Multifunctional Chondroitin Sulphate for Cartilage Tissue-Biomaterial Integration
,”
Nature Mater.
,
6
(
5
), pp.
385
392
.
37.
Alston
,
S. M.
,
Solen
,
K. A.
,
Broderick
,
A. H.
,
Sukavaneshvar
,
S.
, and
Mohammad
,
S. F.
, 2007, “
New Method to Prepare Autologous Fibrin Glue on Demand
,”
Transl. Res.
,
149
(
4
), pp.
187
195
.
38.
McDermott
,
M. K.
,
Chen
,
T.
,
Williams
,
C. M.
,
Markley
,
K. M.
, and
Payne
,
G. F.
, 2004, “
Mechanical Properties of Biomimetic Tissue Adhesive Based on the Microbial Transglutaminase-Catalyzed Crosslinking of Gelatin
,”
Biomacromolecules
,
5
(
4
), pp.
1270
1279
.
39.
Kjaergard
,
H. K.
,
Velada
,
J. L.
,
Pedersen
,
J. H.
,
Fleron
,
H.
, and
Hollingsbee
,
D. A.
, 2000, “
Comparative Kinetics of Polymerisation of Three Fibrin Sealants and Influence on Timing of Tissue Adhesion
,”
Thromb. Res.
,
98
(
2
), pp.
221
228
.
40.
Orr
,
T. E.
,
Patel
,
A. M.
,
Wong
,
B.
,
Hatzigiannis
,
G. P.
,
Minas
,
T.
, and
Spector
,
M.
, 1999, “
Attachment of Periosteal Grafts to Articular Cartilage With Fibrin Sealant
,”
J. Biomed. Mater. Res.
,
44
(
3
), pp.
308
313
.
41.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
, 2009, “
Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena
,”
J. Biomech. Eng.
,
131
(
6
), p.
061003
.
42.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2005, “
A Fibril–Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
,
38
(
6
), pp.
1195
1204
.
43.
Owen
,
J. R.
, and
Wayne
,
J. S.
, 2006, “
Influence of a Superficial Tangential Zone Over Repairing Cartilage Defects: Implications for Tissue Engineering
,”
Biomech. Model. Mechanobiol.
,
5
(
2
), pp.
102
110
.
44.
Shirazi
,
R.
, and
Shirazi-Adl
,
A.
, 2009, “
Computational Biomechanics of Articular Cartilage of Human Knee Joint: Effect of Osteochondral Defects
,”
J. Biomech.
,
42
, pp.
2458
2465
.
45.
Li
,
L. P.
,
Cheung
,
J. T.
, and
Herzog
,
W.
, 2009, “
Three-Dimensional Fibril-Reinforced Finite Element Model of Articular Cartilage
,”
Med. Biol. Eng. Comput.
,
47
, pp.
607
615
.
46.
Weightman
,
B.
, 1976, “
Tensile Fatigue of Human Articular Cartilage
,”
J. Biomech.
,
9
(
4
), pp.
193
200
.
47.
Grodzinsky
,
A. J.
,
Levenston
,
M. E.
,
Jin
,
M.
, and
Frank
,
E. H.
, 2000, “
Cartilage Tissue Remodeling in Response to Mechanical Forces
,”
Annu. Rev. Biomed. Eng.
,
2
, pp.
691
713
.
48.
Forsell
,
C.
, and
Gasser
,
T. C.
, 2011, “
Numerical Simulation of the Failure of Ventricular Tissue Due to Deep Penetration: The Impact of Constitutive Properties
,”
J. Biomech.
,
44
(
1
), pp.
45
51
.
49.
Eyrich
,
D.
,
Brandl
,
F.
,
Appel
,
B.
,
Wiese
,
H.
,
Maier
,
G.
,
Wenzel
,
M.
,
Staudenmaier
,
R.
,
Goepferich
,
A.
, and
Blunk
,
T.
, 2007, “
Long-Term Stable Fibrin Gels for Cartilage Engineering
,”
Biomaterials
,
28
(
1
), pp.
55
65
.
You do not currently have access to this content.