Estimation of biomechanical parameters of soft tissues from noninvasive measurements has clinical significance in patient-specific modeling and disease diagnosis. In this work, we present a quasi-nonlinear method that is used to estimate the elastic moduli of the human gallbladder wall. A forward approach based on a transversely isotropic membrane material model is used, and an inverse iteration is carried out to determine the elastic moduli in the circumferential and longitudinal directions between two successive ultrasound images of gallbladder. The results demonstrate that the human gallbladder behaves in an anisotropic manner, and constitutive models need to incorporate this. The estimated moduli are also nonlinear and patient dependent. Importantly, the peak stress predicted here differs from the earlier estimate from linear membrane theory. As the peak stress inside the gallbladder wall has been found to strongly correlate with acalculous gallbladder pain, reliable mechanical modeling for gallbladder tissue is crucial if this information is to be used in clinical diagnosis.

References

References
1.
Caldwell
,
F. T.
, Jr.
,
Sherman
,
E. B.
, and
Levitsky
,
K.
, 1969, “
The Composition of Bladder Bile and the Histological Pattern of the Gallbladder and Liver of the Sea Cow
,”
Comp. Biochem. Physiol.
,
28
(
1
), pp.
437
440
.
2.
Bird
,
N.
,
Wegstapel
,
H.
,
Chess-Williams
,
R.
, and
Johnson
,
A. G.
, 1996, “
In Vitro Contractility of Simulated Human and Non-Stimulated Gallbladder Muscle
,”
Neurogastroenterol. Motil.
,
8
(
1
), pp.
63
68
.
3.
Su
,
Y.
, 2005, “
The Mechanical Properties of Human Gallbladder
,” Ph.D. thesis, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
4.
Bertuzzi
,
A.
,
Gandolfi
,
A.
,
Greco
,
A. V.
,
Mancinelli
,
R.
,
Mingrone
,
G.
, and
Salinari
,
S.
, 1992,
Material Identification of Guinea-Pig Gallbladder Wall
, 14th Annual International Conference of the IEEE,
Engineering in Medicine and Biology Society
.
5.
Liao
,
D.
,
Duch
,
B.
,
Stødkilde-Jørgensen
,
H.
,
Zeng
,
Y.
,
Gregersen
,
H.
, and
Kassab
,
G.
, 2004, “
Tension and Stress Calculations in a 3-D Fourier Model of Gall Bladder Geometry Obtained From MR Images
,”
Ann. Biomed. Eng.
,
32
(
5
), pp.
744
755
.
6.
Li
,
W.
,
Luo
,
X.
,
Hill
,
N.
,
Smythe
,
A.
,
Chin
,
S.
,
Johnson
,
A.
, and
Bird
,
N.
, 2008, “
Correlation of Mechanical Factors and Gallbladder Pain
,”
Comput. Math. Methods Med.
,
9
(
1
), pp.
27
45
.
7.
Li
,
W. G.
,
Luo
,
X. Y.
,
Hill
,
N. A.
,
Ogden
,
R. W.
,
Smythe
,
A.
,
Majeed
,
A.
, and
Bird
,
N.
, 2011, “
A Mechanical Model for CCK-Induced Acalculous Gallbladder Pain
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
786
800
.
8.
Li
,
W.
,
Luo
,
X.
,
Hill
,
N.
,
Ogden
,
R.
,
Tian
,
T.
,
Smythe
,
A.
,
Majeed
,
A.
, and
Bird
,
N.
, 2011, “
Cross-Bridge Apparent Rate Constants of Human Gallbladder Smooth Muscle
,”
J. Muscle Res. Cell Motil.
,
32
(
3
), pp.
209
220
.
9.
Tilleman
,
T. R.
,
Tilleman
,
M. M.
, and
Neumann
,
M.
, 2004, “
The Elastic Properties of Cancerous Skin: Poisson’s Ratio and Young’s Modulus
,”
Isr. Med. Assoc. J.
,
6
(
12
), pp.
753
755
. Available at: http://www.ima.org.il/imaj/ar04dec-8.pdf.
10.
Schulze-Bauer
,
C. A.
, and
Holzapfel
,
G. A.
, 2003, “
Determination of Constitutive Equations for Human Arteries From Clinical Data
,”
J. Biomech.
,
36
(
2
), pp.
165
169
.
11.
Karimi
,
R.
,
Zhu
,
T.
,
Bouma
,
B. E.
, and
Kaazempur Mofrad
,
M. R.
, 2008, “
Estimation of Nonlinear Mechanical Properties of Vascular Tissues via Elastography
,”
Cardiovasc. Eng.
,
8
(
4
), pp.
191
202
.
12.
Escoffier
,
C.
,
de Rigal
,
J.
,
Rochefort
,
A.
,
Vasselet
,
R.
,
Lévêque
,
J. L.
, and
Agache
,
P. G.
, 1989, “
Age-Related Mechanical Properties of Human Skin: An In Vivo Study
,”
J. Invest. Dermatol.
,
93
(
3
), pp.
353
357
.
13.
Lee
,
T.
,
Garlapati
,
R. R.
,
Lam
,
K.
,
Lee
,
P. V.
,
Chung
,
Y. S.
,
Choi
,
J. B.
,
Vincent
,
T. B.
, and
Das De
,
S.
, 2010, “
Fast Tool for Evaluation of Iliac Crest Tissue Elastic Properties Using the Reduced-Basis Methods
,”
Biomech. Eng.
,
132
, p.
121009
.
14.
Samani
,
A.
, and
Plewes
,
D.
, 2007, “
An Inverse Problem Solution for Measuring the Elastic Modulus of Intact Ex Vivo Breast Tissue Tumours
,”
Phys. Med. Biol.
,
52
, pp.
1247
1257
.
15.
Iding
,
R. H.
,
Pister
,
K. S.
, and
Taylor
,
R. L.
, 1974, “
Identification of Nonlinear Elastic Solids by a Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
4
(
2
), pp.
121
142
.
16.
Govindjee
,
S.
, and
Mihalic
,
P. A.
, 1996, “
Computational Methods for Inverse Finite Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
,
136
(
1–2
), pp.
47
57
.
17.
Govindjee
,
S.
, and
Mihalic
,
P. A.
, 1998, “
Computational Methods for Inverse Deformations In Quasi Incompressible Finite Elasticity
,”
Int. J. Numer. Methods Eng.
,
43
(
5
), pp.
821
838
.
18.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2007, “
Computational Method of Inverse Elastostatics for Anisotropic Hyperelastic Solids
,”
Int. J. Numer. Methods Eng.
,
69
(
6
), pp.
1239
1261
.
19.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2007, “
Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysms
,”
J. Biomech.
,
40
(
3
), pp.
693
696
.
20.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2008, “
Inverse Method of Stress Analysis for Cerebral Aneurysms
,”
Biomech. Model. Mechanbiol.
,
7
(
6
), pp.
477
486
.
21.
Gee
,
M.
,
Reeps
,
C.
,
Eckstein
,
H.
, and
Wall
,
W.
, 2009, “
Prestressing in Finite Deformation Abdominal Aortic Aneurysm Simulation
,”
J. Biomech.
,
42
(
11
), pp.
1732
1739
.
22.
Zhou
,
X.
,
Raghavan
,
M. L.
,
Harbaugh
,
R. E.
, and
Lu
,
J.
, 2010, “
Patient-Specific Wall Stress Analysis in Cerebral Aneurysms using Inverse Shell Model
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
478
489
.
23.
Guo
,
Z.
,
You
,
S.
,
Wan
,
X.
, and
Bicanic
,
N.
, 2010, “
A FEM-Based Direct Method for Material Reconstruction Inverse Problem in Soft Tissue Elastography
,”
Comput. Struct.
,
88
(
23–24
), pp.
1459
1468
.
24.
Raghupathy
,
R.
, and
Barocas
,
V. H.
, 2010, “
Generalized Anisotropic Inverse Mechanics for Soft Tissues
,”
Biomech. Eng.
,
132
, p.
081006
.
25.
Moulton
,
M. J.
,
Creswell
,
L. L.
,
Actis
,
R. L.
,
Myers
,
K. W.
,
Vannier
,
M. W.
,
Szabo
,
B. A.
, and
Pasque
,
M. K.
, 1995, “
An Inverse Approach to Determining Myocardial Material Properties
,”
J. Biomech.
,
28
(
8
), pp.
935
948
.
26.
Kauer
,
M.
,
Vuskovic
,
V.
,
Dual
,
J.
,
Szekely
,
G.
, and
Bajka
,
M.
, 2002, “
Inverse Finite Element Characterization of Soft Tissues
,”
Med. Image Anal.
,
6
(
3
), pp.
275
287
.
27.
Seshaiyer
,
P.
, and
Humphrey
,
J. D.
, 2003, “
A Sub-Domain Inverse Finite Element Characterization of Hyperelastic Membranes Including Soft Tissues
,”
J. Biomech. Eng.
,
125
, pp.
363
371
.
28.
Bosisio
,
M.
,
Talmant
,
M.
,
Skalli
,
W.
,
Laugier
,
P.
, and
Mitton
,
D.
, 2007, “
Apparent Young’s Modulus of Human Radius Using Inverse Finite-Element Method
,”
J. Biomech.
,
40
(
9
), pp.
2022
2028
.
29.
Lei
,
F.
, and
Szeri
,
A.
, 2007, “
Inverse Analysis of Constitutive Models: Biological Soft Tissues
,”
J. Biomech.
,
40
(
4
), pp.
936
940
.
30.
Gokhale
,
N. H.
,
Barbone
,
P. E.
, and
Oberai
,
A. A.
, 2008, “
Solution of the Nonlinear Elasticity Imaging Inverse Problem: The Compressible Case
,”
Inverse Probl.
,
24
, p.
045010
.
31.
Li
,
J.
,
Cui
,
Y.
,
English
,
R.
, and
Noble
,
J. A.
, 2009, “
Ultrasound Estimation of Breast Tissue Biomechanical Properties Using a Similarity-Based Non-Linear Optimization Approach
,”
J. Strain Anal. Eng. Des.
,
44
(
5
), pp.
363
374
.
32.
Balocco
,
S.
Camara
,
O.
,
Vivas
,
E.
,
Sola
,
T.
,
Guimaraens
,
L.
,
van Andel
,
H. A.
,
Majoie
,
C. B.
,
Pozo
,
J. M.
,
Bijnens
,
B. H.
, and
Frangi
,
A. F.
, 2010, “
Feasibility of Estimating Regional Mechanical Properties of Cerebral Aneurysms In Vivo
,”
Med. Phys.
,
37
, pp.
1689
1706
.
33.
Kroon
,
M.
, 2010, “
A Numerical Framework for Material Characterisation of Inhomogeneous Hyperelastic Membranes by Inverse Analysis
,”
J. Comput. Appl. Math.
,
234
(
2
), pp.
563
578
.
34.
Smythe
,
A.
,
Majeed
A.
,
Fitzhenry
,
M.
, and
Johnson
,
A.
, 1998, “
A Requiem for the Cholecystokinin Provocation Test?
,”
Gut
,
43
(
4
), pp.
571
574
.
35.
Bergel
,
D.
, 1961, “
The Static Elastic Properties of the Arterial Wall
,”
J. Physiol.
,
156
(
3
), pp.
445
457
. Available at: http://jp.physoc.org/content/156/3/445.full.pdf.
36.
Fung
,
Y. C.
, 1967, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
,
213
(
6
), pp.
1532
1544
. Avaiable at: http://ajplegacy.physiology.org/content/213/6/1532.full.pdf.
37.
Wu
,
H. C.
, and
Yao
R. F.
, 1976, “
Mechanical Behavior of the Human Annulus Fibrosus
,”
J. Biomech.
,
9
(
1
), pp. IN1
3
7
.
38.
Middelfart
,
H.
,
Jensen
,
P.
,
Højgaard
,
L.
, and
Funch-Jensen
,
P.
, 1998, “
Pain Patterns After Distension of the Gallbladder in Patients With Acute Cholecystitis
,”
Scand. J. Gastroenterol.
,
33
(
9
), pp.
982
987
.
39.
Duch
,
B. U.
,
Andersen
,
H.
,
Smith
,
J.
,
Kassab
,
G.
, and
Gregersen
,
H.
, 2002, “
Structural and Mechanical Remodelling of the Common Bile Duct After Obstruction
,”
Neurogastroenterol. Motil.
,
14
(
2
), pp.
111
122
.
40.
Duch
,
B. U.
,
Andersen
,
H.
, and
Gregersen
,
H.
, 2004, “
Mechanical Properties of the Porcine Bile Duct Wall
,”
Biomed. Eng. Online
,
3
(
1
), pp.
23
31
.
41.
Dou
,
Y.
,
Lu
,
X.
,
Zhao
,
J.
, and
Gregersen
,
H.
, 2002, “
Morphometric and Biomechanical Remodelling in the Intestine After Small Bowel Resection in the Rat
,”
Neurogastroenterol. Motil.
,
14
(
1
), pp.
43
53
.
42.
Dou
,
Y.
,
Fan
,
Y.
,
Zhao
,
J.
, and
Gregersen
,
H.
, 2006, “
Longitudinal Residual Strain and Stress-Strain Relationship in Rat Small Intestine
,”
Biomed. Eng. Online
,
5
(
1
), pp.
37
46
.
43.
Zhao
,
J.
,
Liao
,
D.
, and
Gregersen
,
H.
, 2005, “
Tension and Stress in the Rat and Rabbit Stomach are Location-and Direction-Dependent
,”
Neurogastroenterol. Motil.
,
17
(
3
), pp.
388
398
.
44.
Colding-Jørgensen
,
M.
, and
Steven
,
K.
, 1993, “
A Model of the Mechanics of Smooth Muscle Reservoirs Applied to the Intestinal Bladder
,”
Neurourol. Urodyn.
,
12
(
1
), pp.
59
79
.
45.
Yeatman
,
L.
,
Parmley
,
W. W.
, and
Sonnenblick
,
E.
, 1969, “
Effects of Temperature on Series Elasticity and Contractile Element Motion in Heart Muscle
,”
Am. J. Physiol. Legacy Content
,
217
(
4
), pp.
1030
1034
. Available at: http://ajplegacy.physiology.org/content/217/4/1030.full.pdf.
46.
Mirsky
,
I.
, and
Parmley
,
W. W.
, 1973, “
Assessment of Passive Elastic Stiffness for Isolated Heart Muscle and the Intact Heart
,”
Circ. Res.
,
33
(
2
), pp.
233
243
.
47.
Washabau
,
R.
,
Wang
,
M.
,
Dorst
,
C.
, and
Ryan
,
J.
, 1991, “
Effect of Muscle Length on Isometric Stress and Myosin Light Chain Phosphorylation in Gallbladder Smooth Muscle
,”
Am. J. Physiol., Gastrointest. Liver Physiol.
,
260
(
6
), pp.
G920
G924
. Available at: http://ajpgi.physiology.org/content/260/6/G920.full.pdf.
48.
Barra
,
J.
,
Armentano
,
R.
,
Levenson
,
J.
,
Fischer
,
E.
,
Pichel
,
R.
, and
Simon
,
A.
, 1993, “
Assessment of Smooth Muscle Contribution to Descending Thoracic Aortic Elastic Mechanics in Conscious Dogs
,”
Circ. Res.
,
73
(
6
), pp.
1040
1050
.
49.
Khalil
,
A. S.
,
Bouma
,
B. E.
, and
Kaazempur Mofrad
,
M. R.
, 2006, “
A Combined FEM/Genetic Algorithm for Vascular Soft Tissue Elasticity Estimation
,”
Cardiovasc. Eng.
,
6
(
3
), pp.
93
102
.
50.
Pauletzki
,
J.
,
Sackmann
,
M.
,
Holl
,
J.
, and
Paumgartner
,
G.
, 1996, “
Evaluation of Gallbladder Volume and Emptying With a Novel Three-Dimensional Ultrasound System: Comparison With the Sum-Of-Cylinders and the Ellipsoid Methods
,”
J. Clin. Ultrasound
,
24
(
6
), pp.
277
285
.
You do not currently have access to this content.