Measuring a bone’s response to impact has traditionally been done using strain gauges that are attached directly to the bone. Accelerometers have also been used for this purpose because they are reusable, inexpensive and can be attached easily. However, little data are available relating measured accelerations to bone injury, or to judge if accelerometers are reasonable surrogates for strain gauges in terms of their capacity to predict bone injuries. Impacts were applied with a custom designed pneumatic impact system to eight fresh-frozen human cadaveric radius specimens. Impacts were repeatedly applied with increasing energy until ultimate failure occurred. Three multiaxial strain gauge rosettes were glued to the bone (two distally and one proximally). Two multiaxial accelerometers were attached to the distal dorsal and proximal volar aspects of the radius. Overall, peak minimum and maximum principal strains were calculated from the strain-time curves from each gauge. Peak accelerations and acceleration rates were measured parallel (axial) and perpendicular (off-axis) to the long axis of the radius. Logistic generalized estimating equations were used to create strain and acceleration-based injury prediction models. To develop strain prediction models based on the acceleration variables, Linear generalized estimating equations were employed. The logistic models were assessed according to the quasi-likelihood under independence model criterion (QIC), while the linear models were assessed by the QIC and the marginal R2. Peak axial and off-axis accelerations increased significantly (with increasing impact energy) across all impact trials. The best injury prediction model (QIC = 9.42) included distal resultant acceleration (p < 0.001) and donor body mass index (BMI) (p < 0.001). Compressive and tensile strains were best predicted by separate uni-variate models, including peak distal axial acceleration (R2 = 0.79) and peak off-axis acceleration (R2 = 0.79), respectively. Accelerometers appear to be a valid surrogate to strain gauges for measuring the general response of the bone to impact and predicting the probability of bone injury.

References

References
1.
Radin
,
E. L.
,
Parker
,
H. G.
,
Pugh
,
J. W.
,
Steinberg
,
R. S.
,
Paul
,
I. L.
, and
Rose
,
R. M.
, 1973, “
Response of the Joints to Impact Loading-III
,”
J. Biomech.
,
6
(
1
), pp.
51
57
.
2.
Pelker
,
R. R.
, and
Saha
,
S.
, 1983, “
Stress Wave Propagation in Bone
,”
J. Biomech.
,
16
(
7
), pp.
481
489
.
3.
Folma
,
Y.
,
Goshen
,
E.
,
Gepstein
,
R.
,
Sevi
,
R.
, and
Libert
,
S.
, 1993, “
Acceleration Assessment of Osseous Union
,”
Arch. Orthop. Trauma Surg.
,
112
, pp.
193
197
.
4.
Milgrom
,
C.
,
Finestone
,
A.
,
Hamel
,
A.
,
Mandes
,
V.
,
Burr
,
D.
, and
Sharkey
,
N.
, 2004, “
A Comparison of Bone Strain Measurements at Anatomically Relevant Sites Using Surface Gauges Versus Strain Gauged Bone Staples
,”
J. Biomech.
,
37
, pp.
947
952
.
5.
Lafortune
,
M. A.
,
Lake
,
M. J.
, and
Hennig
,
E. M.
, 1996, “
Differential Shock Transmission Response of the Human Body to Impact Severity and Lower Limb Posture
,”
J. Biomech.
,
29
(
12
), pp.
1531
1537
.
6.
Burkhart
,
T. A.
, and
Andrews
,
D. M.
, 2010, “
The Effectiveness of Wrist Guards for Reducing Wrist and Elbow Accelerations Resulting From Simulated Forward Falls
,”
J. Appl. Biomech.
,
26
, pp.
281
289
.
7.
Burkhart
,
T. A.
, and
Andrews
,
D. M.
, 2010, “
Activation Level of Extensor Carpi Ulnaris Affects Wrist and Elbow Acceleration Response Following Simulated Forward Falls
,”
J. Electromy. Kinesiol.
,
20
, pp.
1203
1210
.
8.
Boyer
,
K. A.
, and
Nigg
,
B. M.
, 2004, “
Muscle Activity in the Leg is Tuned in Response to Impact Force Characteristics
,”
J. Biomech.
,
37
, pp.
1583
1588
.
9.
Schinkel-Ivey
,
A.
,
Burkhart
,
T. A.
, and
Andrews
,
D. M.
, 2012, “
Leg Tissue Mass Composition Affects Tibial Acceleration Response Following Impact
,”
J. Appl. Biomech.
,
28
, pp.
29
40
.
10.
Hwang
,
I.-K.
, and
Kim
,
K.-J.
, 2004, “
Shock-Absorbing Effects of Various Padding Conditions in Improving Efficacy of Wrist Guards
,”
J. Sports Sci. Med.
,
3
, pp.
23
29
.
11.
Kim
,
K.-J.
,
Alian
,
A. M.
,
Morris
,
W. S.
, and
Lee
,
Y.-H.
, 2006, “
Shock Attenuation of Various Protective Devices for Prevention of Fall Related Injuries of the Forearm/Hand Complex
,”
Am. J. Sports Med.
,
34
, pp.
637
643
.
12.
Edwards
,
W. B.
,
Ward
,
E. D.
,
Meardon
,
S. A.
, and
Derrick
,
T. R.
, 2009, “
The Use of External Transducers for Estimating Bone Strain at the Distal Tibia During Impact Activity
,”
J. Biomech. Eng.
,
131
, p.
051009
.
13.
Greenwald
,
R. M.
,
Janes
,
P. C.
,
Swanson
,
S. C.
, and
McDonald
,
T. R.
, 1998, “
Dynamic Impact Response of Human Cadaveric Forearms using a Wrist Brace
,”
Am. J. Sports Med.
,
26
, pp.
825
830
.
14.
Staebler
,
M. P.
,
Moore
,
D. C.
,
Akelman
,
E.
,
Weiss
,
A.-P. C.
,
Fadale
,
P. D.
, and
Crisco
,
J. J.
, 1999, “
The Effect of Wrist Guards on Bone Strain in the Distal Forearm
,”
Am. J. Sports Med.
,
27
, pp.
500
506
.
15.
Leslie
,
I. J.
, and
Dickson
,
R. A.
, 1981, “
The Fractured Carpal Scaphoid: Natural History and Factors Influencing Outcome
,”
J. Bone Joint Surg.
,
63-B
, pp.
225
230
.
16.
Werner
,
F. W.
,
Short
,
W. H.
,
Fortino
,
M. D.
, and
Palmer
,
A. K.
, 1997, “
The Relative Contribution of Selected Carpal Bones to Global Wrist Motion During Simulated Planar Motion and Out-of-Plane Wrist Motion
,”
J. Hand Surg.
,
22-A
, pp.
708
713
.
17.
Troy
,
K. L.
, and
Grabiner
,
M. D.
, 2007, “
Off-Axis Loads Cause Failure of the Distal Radius at Lower Magnitudes than Axial Loads: A Finite Element Analysis
,”
J. Biomech.
,
40
, pp.
1670
1675
.
18.
Quenneville
,
C. E.
,
Fraser
,
G. S.
, and
Dunning
,
C. E.
, 2010, “
Development of an Apparatus to Produce Fractures From Short-Duration High-Impulse Loading With an Application in the Lower Leg
,”
J. Biomech. Eng.
,
32
, p.
014502
.
19.
Austman
,
R. L.
,
Beaton
,
B. J. B.
,
Quenneville
,
C. E.
,
King
,
G. J. W.
,
Gordon
,
K. D.
, and
Dunning
,
C. E.
, 2007, “
The Effect of Distal Ulnar Implant Stem Material and Length on Bone Strains
,”
J. Hand. Sur. [Am]
,
32-A
, pp.
848
854
.
20.
Burkhart
,
T. A.
,
Dunning
,
C. E.
, and
Andrews
,
D. M.
, 2011, “
Determining the Optimal System Specific Cut-Off Frequencies for Filtering In-Vitro Upper Extremity Impact Force and Acceleration Data by Residual Analysis
,”
J. Biomech.
,
44
, pp.
2725
2755
.
21.
Benham
,
P. P.
,
Crawford
,
R. J.
, and
Armstrong
,
C. G.
, 1996,
Mechanics of Engineering Materials
,
2nd ed.
,
Pearson Prentice Hall
,
Harlow, UK
, Chap. 11.
22.
Duquette
,
A. M.
, and
Andrews
,
D. M.
, 2010, “
Comparing Methods of Quantifying Tibial Acceleration Slope
,”
J. Appl. Biomech.
,
2
, pp.
229
233
.
23.
Pan
,
W.
, 2001, “
Akaike’s Information Criterion in Generalized Estimating Equations
,”
Biometrics
,
57
(
1
), pp.
120
125
.
24.
Ballinger
,
G. A.
, 2004, “
Using Generalized Estimating Equations for Longitudinal Data Analysis
,”
Organ. Res. Meth.
,
7
, pp.
127
150
.
25.
Zheng
,
B.
, 2000, “
Summarizing the Goodness of Fit of Generalized Linear Models for Longitudinal Data
,”
Stat. Med.
,
19
, pp.
1265
1275
.
26.
De Laet
,
C.
,
Kanis
,
J. A.
,
Oden
,
A.
,
Johanson
,
H.
,
Johnell
,
O.
,
Delmas
,
P.
,
Eisman
,
J. A.
,
Kroger
,
H.
,
Fujiwara
,
S.
,
Garnero
,
P.
,
McCloskey
,
E. V.
,
Mellstrom
,
D.
,
Melton
,
L. J.
,
Meunier
,
P. J.
,
Pols
,
H. A. P.
,
Reeve
,
J.
,
Silman
,
A.
, and
Tenenhouse
,
A.
, 2005, “
Body Mass Index as a Predictor of Fracture Risk: A Meta-Analysis
,”
Osteopor. Int.
,
16
, pp.
1330
1338
.
27.
Hui
,
S. L.
,
Slemenda
,
C. W.
, and
Johnston
,
C. C.
, Jr
., 1988, “
Age and Bone Mass as Predictors of Fractures in a Prospective Study
,”
J. Clin. Invest.
,
81
, pp.
1804
1809
.
28.
Nordin
,
M.
, and
Frankel
,
V. H.
, 2001,
Basic Biomechanics of the Musculoskeletal System
,
Lippincott Williams and Williams
,
Baltimore, MD
.
29.
Cheng
,
S.
,
Timonen
,
J.
, and
Suominen
,
H.
, 1995, “
Elastic Wave Propagation in Bone In-Vivo: Methodology
,”
J. Biomech.
,
28
(
4
), pp.
471
478
.
30.
Paul
,
I. L.
,
Munro
,
M. B.
,
Abernethy
,
P. J.
,
Simon
,
S. R.
,
Radin
,
E. L.
, and
Rose
,
R. M.
, “
Musculoskeletal Shock Absorption: Relative Contribution of Bone and Soft Tissues at Various Frequencies
,”
J. Biomech.
,
11
, pp.
237
239
.
31.
Holmes
,
A. M.
, and
Andrews
,
D. M.
, 2006, “
The Effect of Leg Muscle Activation State and Localized Muscle Fatigue on Tibial Response during Impact
,”
J. Appl. Biomech.
,
22
(
4
), pp.
275
284
.
32.
Lafortune
,
M. A.
,
Henning
,
E.
, and
Valiant
,
G. A.
, 1995, “
Tibial Shock Measured With Bone and Skin Mounted Transducers
,”
J. Biomech.
,
28
(
8
), pp.
989
993
.
You do not currently have access to this content.