Osteoporosis is a well recognized problem affecting millions of individuals worldwide. The ability to diagnose problems in an effective, efficient, and affordable manner and identify individuals at risk is essential. Site-specific assessment of bone mechanical properties is necessary, not only in the process of fracture risk assessment, but may also be desirable for other applications, such as making intraoperative decisions during spine and joint replacement surgeries. The present study evaluates the use of a one-dimensional granular crystal sensor to measure the elastic properties of bone at selected locations via direct mechanical contact. The granular crystal is composed of a tightly packed chain of particles that interact according to the Hertzian contact law. Such chains represent one of the simplest systems to generate and propagate highly nonlinear acoustic signals in the form of compact solitary waves. First, we investigated the sensitivity of the sensor to known variations in bone density using a synthetic cancellous bone substitute, representing clinical bone quality ranging from healthy to osteoporotic. Once the relationship between the signal response and known bone properties was established, the sensor was used to assess the bone quality of ten human cadaveric specimens. The efficacy and accuracy of the sensor was then investigated by comparing the sensor measurements with the bone mineral density (BMD) obtained using dual-energy x-ray absorptiometry (DEXA). The results indicate that the proposed technique is capable of detecting differences in bone quality. The ability to measure site-specific properties without exposure to radiation has the potential to be further developed for clinical applications.

References

References
1.
Crowninshield
,
R. D.
,
Rosenberg
,
A. G.
, and
Sporer
,
S. M.
, 2006, “
Changing Demographics of Patients With Total Joint Replacement
,”
Clin. Orthop. Relat. Res.
,
443
, pp.
266
272
.
2.
Kurtz
,
S. M.
,
Ong
,
K. L.
,
Schmier
,
J.
,
Mowat
,
F.
,
Saleh
,
K.
,
Dybvik
,
E.
,
Karrholm
,
J.
,
Garellick
,
G.
,
Havelin
,
L. I.
,
Furnes
,
O.
,
Malchau
,
H.
, and
Lau
,
E.
, 2007, “
Future Clinical and Economic Impact of Revision Total Hip and Knee Arthroplasty
,”
J. Bone Joint Surg. Am.
,
89
(
3
), pp.
144
151
.
3.
Kurtz
,
S. M.
,
Lau
,
E.
,
Ong
,
K.
,
Zhao
,
K.
,
Kelly
,
M.
, and
Bozic
,
K. J.
, 2009, “
Future Young Patient Demand for Primary and Revision Joint Replacement: National Projections From 2010 to 2030
,”
Clin. Orthop. Relat. Res.
,
467
, pp.
2606
2612
.
4.
Deyo
,
R. A.
, and
Mirza
,
S. K.
, 2006, “
Trends and Variations in the Use of Spine Surgery
,”
Clin. Orthop. Relat. Res.
,
443
, pp.
139
146
.
5.
Lochmuller
,
E. M.
,
Muller
,
R.
,
Kuhn
,
V.
,
Lill
,
C. A.
, and
Eckstein
,
F.
, 2003, “
Can Novel Clinical Densitometric Techniques Replace or Improve DXA in Predicting Bone Strength in Osteoporosis at the Hip and Other Skeletal Sites?
,”
J. Bone Miner. Res.
,
18
, pp.
906
912
.
6.
Myers
,
E. R.
,
Hecker
,
A. T.
,
Rooks
,
D. S.
,
Hipp
,
J. A.
, and
Hayes
,
W. C.
, 1993, “
Geometric Variables From DXA of the Radius Predict Forearm Fracture Load In Vitro
,”
Calcif. Tissue Int.
,
52
, pp.
199
204
.
7.
Kanis
,
J. A.
, 2002, “
Diagnosis of Osteoporosis and Assessment of Fracture Risk
,”
Lancet
,
359
, pp.
1929
1936
.
8.
Zucherman
,
J. F.
,
Hsu
,
K. Y.
,
Hartjen
,
C. A.
,
Mehalic
,
T. F.
,
Implicito
,
D. A.
,
Martin
,
M. J.
,
Johnson
,
D. R.
II
,
Skidmore
,
G. A.
,
Vessa
,
P. P.
,
Dwyer
,
J. W.
,
Puccio
,
S. T.
,
Cauthen
,
J. C.
, and
Ozuna
,
R. M.
, 2005, “
A Multicenter, Prospective, Randomized Trial Evaluating the X STOP Interspinous Process Decompression System for the Treatment of Neurogenic Intermittent Claudication: Two-Year Follow-Up Results
,”
Spine
,
30
, pp.
1351
1358
.
9.
Zmuda
,
J. M.
,
Cauley
,
J. A.
,
Glynn
,
N. W.
, and
Finkelstein
,
J. S.
, 2000, “
Posterior-Anterior and Lateral Dual-Energy X-Ray Absorptiometry for the Assessment of Vertebral Osteoporosis and Bone Loss Among Older Men
,”
J. Bone Miner. Res.
,
15
, pp.
1417
1424
.
10.
Yu
,
W.
,
Gluer
,
C. C.
,
Grampp
,
S.
,
Jergas
,
M.
,
Fuerst
,
T.
,
Wu
,
C. Y.
,
Lu
,
Y.
,
Fan
,
B.
, and
Genant
,
H. K.
, 1995, “
Spinal Bone Mineral Assessment in Postmenopausal Women: A Comparison Between Dual X-Ray Absorptiometry and Quantitative Computed Tomography
,”
Osteoporosis Int.
,
5
, pp.
433
439
.
11.
Bjarnason
,
K.
,
Hassager
,
C.
,
Svendsen
,
O. L.
,
Stang
,
H.
, and
Christiansen
,
C.
, 1996, “
Anteroposterior and Lateral Spinal DXA for the Assessment of Vertebral Body Strength: Comparison With Hip and Forearm Measurement
,”
Osteoporosis Int.
,
6
, pp.
37
42
.
12.
Cheng
,
X. G.
,
Nicholson
,
P. H.
,
Boonen
,
S.
,
Lowet
,
G.
,
Brys
,
P.
,
Aerssens
,
J.
,
Van der Perre
,
G.
, and
Dequeker
,
J.
, 1997, “
Prediction of Vertebral Strength In Vitro by Spinal Bone Densitometry and Calcaneal Ultrasound
,”
J. Bone Miner. Res.
,
12
, pp.
1721
1728
.
13.
Myers
,
B. S.
,
Arbogast
,
K. B.
,
Lobaugh
,
B.
,
Harper
,
K. D.
,
Richardson
,
W. J.
, and
Drezner
,
M. K.
, 1994, “
Improved Assessment of Lumbar Vertebral Body Strength Using Supine Lateral Dual-Energy X-Ray Absorptiometry
,”
J. Bone Miner. Res.
,
9
, pp.
687
693
.
14.
Nesterenko
,
V. F.
, 2001,
Dynamics of Heterogeneous Materials
,
Springer-Verlag
,
New York
.
15.
Idler
,
C.
,
Zucherman
,
J. F.
,
Yerby
,
S.
,
Hsu
,
K. Y.
,
Hannibal
,
M.
, and
Kondrashov
,
D.
, 2008, “
A Novel Technique of Intra-Spinous Process Injection of PMMA to Augment the Strength of an Inter-Spinous Process Device Such as the X STOP
,”
Spine
,
33
, pp.
452
456
.
16.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
, 2006, “
Energy Trapping and Shock Disintegration in a Composite Granular Medium
,”
Phys. Rev. Lett.
,
96
, p.
058002
.
17.
Hong
,
J.
, 2005, “
Universal Power-Law Decay of the Impulse Energy in Granular Protectors
,”
Phys. Rev. Lett.
,
94
, p.
108001
.
18.
Spadoni
,
A.
, and
Daraio
,
C.
, 2010, “
Generation and Control of Sound Bullets With a Nonlinear Acoustic Lens
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
,
7230
7234
.
19.
Khatri
,
D.
,
Daraio
,
C.
, and
Rizzo
,
P.
, 2009, “
Coupling of Highly Nonlinear Waves With Linear Elastic Media
,”
Proc. SPIE
,
6934
, p.
72920
.
20.
Gluer
,
C. C.
,
Wu
,
C. Y.
, and
Genant
,
H. K.
, 1993, “
Broadband Ultrasound Attenuation Signals Depend on Trabecular Orientation: An In Vitro Study
,”
Osteoporosis Int.
,
3
, pp.
185
191
.
21.
Baroncelli
,
G. I.
,
Battini
,
R.
,
Bertelloni
,
S.
,
Brunori
,
E.
,
de Terlizzi
,
F.
,
Vierucci
,
F.
,
Cipriani
,
P.
,
Cioni
,
G.
, and
Saggese
,
G.
, 2010, “
Analysis of Quantitative Ultrasound Graphic Trace and Derived Variables Assessed at Proximal Phalanges of the Hand in Healthy Subjects and in Patients With Cerebral Palsy or Juvenile Idiopathic Arthritis: A Pilot Study
,”
Bone
,
46
, pp.
182
189
.
22.
Job
,
S.
,
Melo
,
F.
,
Sokolow
,
A.
, and
Sen
,
S.
, 2005, “
How Hertzian Solitary Waves Interact With Boundaries in a 1D Granular Medium
,”
Phys. Rev. Lett.
,
94
, p.
178002
.
23.
Yang
,
J.
,
Silvestro
,
C.
,
Khatri
,
D.
,
De Nardo
,
L.
, and
Daraio
,
C.
, 2010, “
Interaction of Highly Nonlinear Solitary Waves With Linear Elastic Media
,”
Phys. Rev. E
,
83
, p.
046606
.
24.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
New York
.
25.
Nesterenko
,
V. F.
,
Daraio
,
C.
,
Herbold
,
E. B.
, and
Jin
,
S.
, 2005, “
Anomalous Wave Reflection at the Interface of Two Strongly Nonlinear Granular Media
,”
Phys. Rev. Lett.
,
95
, p.
158702
.
26.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
, 1997, “
The MATLAB ODE Suite
,”
SIAM J. Sci. Comput.
,
18
, pp.
1
22
.
27.
Njeh
,
C. F.
,
Boivin
,
C. M.
, and
Langton
,
C. M.
, 1997, “
The role of Ultrasound in the Assessment of Osteoporosis: A Review
,”
Osteoporosis Int.
,
7
, pp.
7
22
.
28.
Wachter
,
N. J.
,
Krischak
,
G. D.
,
Mentzel
,
M.
,
Sarkar
,
M. R.
,
Ebinger
,
T.
,
Kinzl
,
L.
,
Claes
,
L.
, and
Augat
,
P.
, 2002, “
Correlation of Bone Mineral Density With Strength and Microstructural Parameters of Cortical Bone In Vitro
,”
Bone
31
, pp.
90
95
.
29.
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Turner
,
C. H.
, 1993, “
Young’s Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements
,”
J. Biomech.
,
26
, pp.
111
119
.
30.
Wirtz
,
D. C.
,
Schiffers
,
N.
,
Pandorf
,
T.
,
Radermacher
,
K.
,
Weichert
,
D.
, and
Forst
,
R.
, 2000, “
Critical Evaluation of Known Bone Material Properties to Realize Anisotropic FE-Simulation of the Proximal Femur
,”
J. Biomech.
,
33
, pp.
1325
1330
.
31.
Keller
,
T. S.
,
Mao
,
Z.
, and
Spengler
,
D. M.
, 1990, “
Young’s Modulus, Bending Strength, and Tissue Physical Properties of Human Compact Bone
,”
J. Orthop. Res.
,
8
, pp.
592
603
.
32.
Goldstein
,
S. A.
, 1987, “
The Mechanical Properties of Trabecular Bone: Dependence on Anatomic Location and Function
,”
J. Biomech.
,
20
, pp.
1055
1061
.
33.
Augat
,
P.
,
Link
,
T.
,
Lang
,
T. F.
,
Lin
,
J. C.
,
Majumdar
,
S.
, and
Genant
,
H. K.
, 1998, “
Anisotropy of the Elastic Modulus of Trabecular Bone Specimens From Different Anatomical Locations
,”
Med. Eng. Phys.
,
20
, pp.
124
131
.
34.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1974, “
Review Article. The Mechanical Properties of Cortical Bone
,”
J. Bone Joint Surg. Am.
,
56
, pp.
1001
1022
.
35.
Crofts
,
R. D.
,
Boyce
,
T. M.
, and
Bloebaum
,
R. D.
, 1994, “
Aging Changes in Osteon Mineralization in the Human Femoral Neck
,”
Bone
,
15
, pp.
147
152
.
36.
Bell
,
K. L.
,
Loveridge
,
N.
,
Power
,
J.
,
Garrahan
,
N.
,
Meggitt
,
B. F.
, and
Reeve
,
J.
, 1999, “
Regional Differences in Cortical Porosity in the Fractured Femoral Neck
,”
Bone
,
24
, pp.
57
64
.
37.
Majumdar
,
S.
,
Kothari
,
M.
,
Augat
,
P.
,
Newitt
,
D. C.
,
Link
,
T. M.
,
Lin
,
J. C.
,
Lang
,
T.
,
Lu
,
Y.
, and
Genant
,
H. K.
, 1998, “
High-Resolution Magnetic Resonance Imaging: Three-Dimensional Trabecular Bone Architecture and Biomechanical Properties
,”
Bone
,
22
, pp.
445
454
.
38.
Snyder
,
S. M.
, and
Schneider
,
E.
, 1991, “
Estimation of Mechanical Properties of Cortical Bone by Computed Tomography
,”
J. Orthop. Res.
,
9
, pp.
422
431
.
You do not currently have access to this content.