Determination of physiological loads in human lumbar spine is critical for understanding the mechanisms of lumbar diseases and for designing surgical treatments. Computational models have been used widely to estimate the physiological loads of the spine during simulated functional activities. However, various assumptions on physiological factors such as the intra-abdominal pressure (IAP), centers of mass (COMs) of the upper body and lumbar segments, and vertebral centers of rotation (CORs) have been made in modeling techniques. Systematic knowledge of how these assumptions will affect the predicted spinal biomechanics is important for improving the simulation accuracy. In this paper, we developed a 3D subject-specific numerical model of the lumbosacral spine including T12 and 90 muscles. The effects of the IAP magnitude and COMs locations on the COR of each motion segment and on the joint/muscle forces were investigated using a global convergence optimization procedure when the subject was in a weight bearing standing position. The data indicated that the line connecting the CORs showed a smaller curvature than the lordosis of the lumbar spine in standing posture when the IAP was 0 kPa and the COMs were 10 mm anterior to the geometric center of the T12 vertebra. Increasing the IAP from 0 kPa to 10 kPa shifted the location of CORs toward the posterior direction (from 1.4 ± 8.9 mm anterior to intervertebral disc (IVD) centers to 40.5 ± 3.1 mm posterior to the IVD centers) and reduced the average joint force (from 0.78 ± 0.11 Body weight (BW) to 0.31 ± 0.07 BW) and overall muscle force (from 349.3 ± 57.7 N to 221.5 ± 84.2 N). Anterior movement of the COMs from −30 mm to 70 mm relative to the geometric center of T12 vertebra caused an anterior shift of the CORs (from 25.1 ± 8.3 mm posterior to IVD centers to 7.8 ± 6.2 mm anterior to IVD centers) and increases of average joint forces (from 0.78 ± 0.1 BW to 0.93 ± 0.1 BW) and muscle force (from 348.9 ± 47.7 N to 452.9 ± 58.6 N). Therefore, it is important to consider the IAP and correct COMs in order to accurately simulate human spine biomechanics. The method and results of this study could be useful for designing prevention strategies of spinal injuries and recurrences, and for enhancing rehabilitation efficiency.

References

1.
Arjmand
,
N.
Gagnon
,
D.
Plamondon
,
A.
Shirazi-Adl
,
A.
and
Lariviere
,
C.
, 2009, “
Comparison of Trunk Muscle Forces and Spinal Loads Estimated by Two Biomechanical Models
,”
Clin. Biomech. (Bristol, Avon)
,
24
(
7
), pp.
533
541
.
2.
El-Rich
,
M.
, and
Shirazi-Adl
,
A.
, 2005, “
Effect of Load Position on Muscle Forces, Internal Loads and Stability of the Human Spine in Upright Postures
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
6
), pp.
359
368
.
3.
Rohlmann
,
A.
,
Bauer
,
L.
,
Zander
,
T.
,
Bergmann
,
G.
, and
Wilke
,
H. J.
, 2006, “
Determination of Trunk Muscle Forces for Flexion and Extension by Using a Validated Finite Element Model of the Lumbar Spine and Measured in Vivo Data
,”
J Biomech.
,
39
(
6
), pp.
981
989
.
4.
Shirazi-Adl
,
A.
,
El-Rich
,
M.
,
Pop
,
D. G.
, and
Parnianpour
,
M.
, 2005, “
Spinal Muscle Forces, Internal Loads and Stability in Standing Under Various Postures and Loads–Application of Kinematics-Based Algorithm
,”
Eur. Spine J
,
14
(
4
), pp.
381
392
.
5.
Rohlmann
,
A.
,
Bergmann
,
G.
,
Graichen
,
F.
, and
Weber
,
U.
, 1997, “
Comparison of Loads on Internal Spinal Fixation Devices Measured in Vitro and in Vivo
,”
Med. Eng. Phys.
,
19
(
6
), pp.
539
546
.
6.
Wilke
,
H. J.
,
Rohlmann
,
A.
,
Neller
,
S.
,
Schultheiss
,
M.
,
Bergmann
,
G.
,
Graichen
,
F.
, and
Claes
,
L. E.
, 2001, “
Is it Possible to Simulate Physiologic Loading Conditions by Applying Pure Moments? A Comparison of in Vivo and in Vitro Load Components in an Internal Fixator
,”
Spine
,
26
(
6
), pp.
636
642
.
7.
Rohlmann
,
A.
,
Arntz
,
U.
,
Graichen
,
F.
, and
Bergmann
,
G.
, 2001, “
Loads on an Internal Spinal Fixation Device During Sitting
,”
J. Biomech.
,
34
(
8
), pp.
989
993
.
8.
Rohlmann
,
A.
,
Graichen
,
F.
, and
Bergmann
,
G.
, 2002, “
Loads on an Internal Spinal Fixation Device During Physical Therapy
,”
Phys. Ther.
,
82
(
1
), pp.
44
52
.
9.
Wilke
,
H.
,
Neef
,
P.
,
Hinz
,
B.
,
Seidel
,
H.
, and
Claes
,
L.
, 2001, “
Intradiscal Pressure Together with Anthropometric Data–A Data Set for the Validation of Models
,”
Clin. Biomech. (Bristol, Avon)
,
16
(
1
), pp.
S111
126
.
10.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
, 1999, “
New in Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
(
8
), pp.
755
762
.
11.
Arjmand
,
N.
,
Gagnon
,
D.
,
Plamondon
,
A.
,
Shirazi-Adl
,
A.
, and
Lariviere
,
C.
, 2010, “
A Comparative Study of Two Trunk Biomechanical Models Under Symmetric and Asymmetric Loadings
,”
J. Biomech.
,
43
(
3
), pp.
485
491
.
12.
Arjmand
,
N.
, and
Shirazi-Adl
,
A.
, 2006, “
Role of Intra-Abdominal Pressure in the Unloading and Stabilization of the Human Spine During Static Lifting Tasks
,”
Eur. Spine J.
,
15
(
8
), pp.
1265
1275
.
13.
Han
,
K. S.
,
Rohlmann
,
A.
,
Yang
,
S. J.
,
Kim
,
B. S.
, and
Lim
,
T. H.
, 2011, “
Spinal Muscles Can Create Compressive Follower Loads in the Lumbar Spine in a Neutral Standing Posture
,”
Med. Eng. Phys.
,
33
(
4
), pp.
472
478
.
14.
Kiefer
,
A.
,
Shirazi-Adl
,
A.
, and
Parnianpour
,
M.
, 1997, “
Stability of the Human Spine in Neutral Postures
,”
Eur. Spine J.
,
6
(
1
), pp.
45
53
.
15.
Kim
,
K.
, and
Kim
,
Y. H.
, 2008, “
Role of Trunk Muscles in Generating Follower Load in the Lumbar Spine of Neutral Standing Posture
,”
J. Biomech. Eng.
,
130(4)
,
p
. 041005.
16.
Kim
,
K.
,
Kim
,
Y. H.
, and
Lee
,
S.
, 2010, “
Shear Force Allowance in Lumbar Spine Under Follower Load in Neutral Standing Posture
,”
Acta Bioeng. Biomech.
,
12
(
4
), pp.
49
53
.
17.
Kim
,
K.
,
Kim
,
Y. H.
, and
Lee
,
S.
, 2011, “
Investigation of Optimal Follower Load Path Generated by Trunk MusclecCoordination
,”
J. Biomech.
,
44
(
8
), pp.
1614
1617
.
18.
Stokes
,
I. A.
, and
Gardner-Morse
,
M.
, 1995, “
Lumbar Spine Maximum Efforts and Muscle Recruitment Patterns Predicted by a Model with Multijoint Muscles and Joints with Stiffness
,”
J. Biomech.
,
28
(
2
), pp.
173
186
.
19.
Stokes
,
I. A.
, and
Gardner-Morse
,
M.
, 2001, “
Lumbar Spinal Muscle Activation Synergies Predicted by Multi-Criteria Cost Function
,”
J. Biomech.
,
34
(
6
), pp.
733
740
.
20.
Stokes
,
I. A.
,
Gardner-Morse
,
M. G.
, and
Henry
,
S. M.
, 2010, “
Intra-Abdominal Pressure and Abdominal Wall Muscular Function: Spinal Unloading Mechanism
,”
Clin. Biomech. (Bristol, Avon)
,
25
(
9
), pp.
859
866
.
21.
Cholewicki
,
J.
,
Juluru
,
K.
, and
McGill
,
S. M.
, 1999, “
Intra-Abdominal Pressure Mechanism for Stabilizing the Lumbar Spine
,”
J. Biomech.
,
32
(
1
), pp.
13
17
.
22.
Li
,
G.
Pierce
,
J. E.
, and
Herndon
,
J. H.
, 2006, “
A Global Optimization Method for Prediction of Muscle Forces of Human Musculoskeletal System
,”
J. Biomech.
,
39
(
3
), pp.
522
529
.
23.
Pierce
,
J. E.
, and
Li
,
G.
, 2005, “
Muscle Forces Predicted Using Optimization Methods are Coordinate System Dependent
,”
J. Biomech.
,
38
(
4
), pp.
695
702
.
24.
Stokes
,
I. A.
, and
Gardner-Morse
,
M.
, 1999, “
Quantitative Anatomy of the Lumbar Musculature
,”
J. Biomech.
,
32
(
3
), pp.
311
316
.
25.
Bogduk
,
N.
,
Macintosh
,
J. E.
, and
Pearcy
,
M. J.
, 1992, “
A Universal Model of the Lumbar Back Muscles in the Upright Position
,”
Spine
,
17
(
8
), pp.
897
913
.
26.
Pearcy
,
M. J.
, and
Bogduk
,
N.
, 1988, “
Instantaneous Axes of Rotation of the Lumbar Intervertebral Joints
,”
Spine
,
13
(
9
), pp.
1033
1041
.
27.
Schmidt
,
H.
,
Heuer
,
F.
,
Claes
,
L.
, and
Wilke
,
H. J.
, 2008, “
The Relation Between the Instantaneous Center of Rotation and Facet Joint Forces – A Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
,
23
(
3
), pp.
270
278
.
28.
Schmidt
,
H.
,
Midderhoff
,
S.
,
Adkins
,
K.
, and
Wilke
,
H. J.
, 2009, “
The Effect of Different Design Concepts in Lumbar Total Disc Arthroplasty on the Range of Motion, Facet Joint Forces and Instantaneous Center of Rotation of a L4-5 Segment
,”
Eur. Spine J.
,
18
(
11
), pp.
1695
1705
.
29.
White
,
A. A.
, and
Panjabi
,
M. M.
,
Clinical Biomechanics of the Spine
(
Lippincott
,
Philadelphia
, 1978).
30.
Damavandi
,
M.
,
Farahpour
,
N.
, and
Allard
,
P.
, 2009, “
Determination of Body Segment Masses and Centers of Mass Using a Force Plate Method in Individuals of Different Morphology
,”
Med. Eng. Phys.
,
31
(
9
), pp.
1187
1194
.
31.
Pearsall
,
D. J.
,
Reid
,
J. G.
, and
Ross
,
R.
, 1994, “
Inertial Properties of the Human Trunk of Males Determined from Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
22
(
6
), pp.
692
706
.
32.
Daggfeldt
,
K.
, and
Thorstensson
,
A.
, 2003, “
The Mechanics of Back-Extensor Torque Production about the Lumbar Spine
,”
J. Biomech.
,
36
(
6
), pp.
815
825
.
33.
Gilad
,
I.
, and
Nissan
,
M.
, 1985, “
Sagittal Evaluation of Elemental Geometrical Dimensions of Human Vertebrae
,”
J. Anat.
,
143
, pp.
115
120
.
34.
Zhou
,
S. H.
,
McCarthy
,
I. D.
,
McGregor
,
A. H.
,
Coombs
,
R. R.
, and
Hughes
,
S. P.
, 2000, “
Geometrical Dimensions of the Lower Lumbar Vertebrae–Analysis of Data from Digitised CT Images
,”
Eur. Spine J.
,
9
(
3
), pp.
242
248
.
35.
Essendrop
,
M.
, and
Schibye
,
B.
, 2004, “
Intra-Abdominal Pressure and Activation of Abdominal Muscles in Highly Trained Participants During Sudden Heavy Trunk Loadings
,”
Spine
,
29
(
21
), pp.
2445
2451
.
36.
Mueller
,
G.
,
Morlock
,
M. M.
,
Vollmer
,
M.
,
Honl
,
M.
,
Hille
,
E.
, and
Schneider
,
E.
, 1998, “
Intramuscular Pressure in the Erector Spinae and Intra-Abdominal Pressure Related to Posture and Load
,”
Spine
,
23
(
23
), pp.
2580
2590
.
37.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Carandang
,
G.
,
Simonds
,
J.
,
Voronov
,
L. I.
,
Ghanayem
,
A. J.
,
Meade
,
K. P.
,
Gavin
,
T. M.
, and
Paxinos
,
O.
, 2003, “
Effect of Compressive Follower Preload on the Flexion-Extension Response of the Human Lumbar Spine
,”
J. Orthop. Res.
,
21
(
3
), pp.
540
546
.
38.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
, 1999, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
,
24
(
10
), pp.
1003
1009
.
39.
Dooris
,
A. P.
,
Goel
,
V. K.
,
Grosland
,
N. M.
,
Gilbertson
,
L. G.
, and
Wilder
,
D. G.
, 2001, “
Load-Sharing Between Anterior and Posterior Elements in a Lumbar Motion Segment Implanted with an Artificial Disc
,”
Spine
,
26
(
6
), pp.
E122
129
.
40.
Xia
,
Q.
,
Wang
,
S.
,
Kozanek
,
M.
,
Passias
,
P.
,
Wood
,
K.
, and
Li
,
G.
, 2010, “
In-Vivo Motion Characteristics of Lumbar Vertebrae in Sagittal and Transverse Planes
,”
J. Biomech.
,
43
(
10
), pp.
1905
1909
.
41.
Cholewicki
,
J.
,
Ivancic
,
P. C.
, and
Radebold
,
A.
, 2002, “
Can Increased Intra-Abdominal Pressure in Humans be Decoupled from Trunk Muscle Co-Contraction During Steady State Isometrice Exertions?
,”
Eur. J. Appl. Physiol.
,
87
(
2
), pp.
127
133
.
42.
Cresswell
,
A. G.
,
Blake
,
P. L.
, and
Thorstensson
,
A.
, 1994, “
The Effect of an Abdominal Muscle Training Program on Intra-Abdominal Pressure
,”
Scand. J. Rehabil. Med.
,
26
(
2
), pp.
79
86
.
43.
Cresswell
,
A. G.
,
Grundstrom
,
H.
, and
Thorstensson
,
A.
, 1992, “
Observations on Intra-Abdominal Pressure and Patterns of Abdominal Intra-Muscular Activity in Man
,”
Acta. Physiol. Scand.
,
144
(
4
), pp.
409
418
.
44.
Hodges
,
P. W.
,
Butler
,
J. E.
,
McKenzie
,
D. K.
, and
Gandevia
,
S. C.
, 1997, “
Contraction of the Human Diaphragm During Rapid Postural Adjustments
,”
J. Physiol.
,
505
(
2
), pp.
539
548
.
45.
Hodges
,
P. W.
,
Cresswell
,
A. G.
,
Daggfeldt
,
K.
, and
Thorstensson
,
A.
, 2001, “
in Vivo Measurement of the Effect of Intra-Abdominal Pressure on the Human Spine
,”
J. Biomech.
,
34
(
3
), pp.
347
353
.
46.
Hodges
,
P. W.
,
Eriksson
,
A. E.
,
Shirley
,
D.
, and
Gandevia
,
S. C.
, 2005, “
Intra-Abdominal Pressure Increases Stiffness of the Lumbar Spine
,”
J. Biomech.
,
38
(
9
), pp.
1873
1880
.
47.
Marras
,
W. S.
, and
Mirka
,
G. A.
, 1996, “
Intra-Abdominal Pressure During Trunk Extension Motions
,”
Clin. Biomech. (Bristol, Avon)
,
11
(
5
), pp.
267
274
.
48.
McGill
,
S. M.
,
Norman
,
R. W.
, and
Sharratt
,
M. T.
, 1990, “
The Effect of an Abdominal Belt on Trunk Muscle Activity and Intra-Abdominal Pressure During Squat Lifts
,”
Ergonomics
,
33
(
2
), pp.
147
160
.
You do not currently have access to this content.