In vivo magnetic resonance image (MRI)-based computational models have been introduced to calculate atherosclerotic plaque stress and strain conditions for possible rupture predictions. However, patient-specific vessel material properties are lacking in those models, which affects the accuracy of their stress/strain predictions. A noninvasive approach of combining in vivo Cine MRI, multicontrast 3D MRI, and computational modeling was introduced to quantify patient-specific carotid artery material properties and the circumferential shrinkage rate between vessel in vivo and zero-pressure geometries. In vivo Cine and 3D multicontrast MRI carotid plaque data were acquired from 12 patients after informed consent. For each patient, one nearly-circular slice and an iterative procedure were used to quantify parameter values in the modified Mooney-Rivlin model for the vessel and the vessel circumferential shrinkage rate. A sample artery slice with and without a lipid core and three material parameter sets representing stiff, median, and soft materials from our patient data were used to demonstrate the effect of material stiffness and circumferential shrinkage process on stress/strain predictions. Parameter values of the Mooney-Rivlin models for the 12 patients were quantified. The effective Young’s modulus (YM, unit: kPa) values varied from 137 (soft), 431 (median), to 1435 (stiff), and corresponding circumferential shrinkages were 32%, 12.6%, and 6%, respectively. Using the sample slice without the lipid core, the maximum plaque stress values (unit: kPa) from the soft and median materials were 153.3 and 96.2, which are 67.7% and 5% higher than that (91.4) from the stiff material, while the maximum plaque strain values from the soft and median materials were 0.71 and 0.293, which are about 700% and 230% higher than that (0.089) from the stiff material, respectively. Without circumferential shrinkages, the maximum plaque stress values (unit: kPa) from the soft, median, and stiff models were inflated to 330.7, 159.2, and 103.6, which were 116%, 65%, and 13% higher than those from models with proper shrinkage. The effective Young’s modulus from the 12 human carotid arteries studied varied from 137 kPa to 1435 kPa. The vessel circumferential shrinkage to the zero-pressure condition varied from 6% to 32%. The inclusion of proper shrinkage in models based on in vivo geometry is necessary to avoid over-estimating the stresses and strains by up 100%. Material stiffness had a greater impact on strain (up to 700%) than on stress (up to 70%) predictions. Accurate patient-specific material properties and circumferential shrinkage could considerably improve the accuracy of in vivo MRI-based computational stress/strain predictions.

References

References
1.
Underhill
,
H. R.
,
Hatsukami
,
T. S.
,
Fayad
,
Z. A.
,
Fuster
,
V.
, and
Yuan
,
C.
, 2010, “
MRI of Carotid Atherosclerosis: Clinical Implications and Future Directions
,”
Nat. Rev. Cardiol.
,
7
(
3
), pp.
165
73
.
2.
Yuan
,
C.
,
Zhang
,
S. X.
,
Polissar
,
N. L.
,
Echelard
,
D.
,
Ortiz
,
G.
,
Davis
,
J. W.
,
Ellington
,
E.
,
Ferguson
,
M. S.
, and
Hatsukami
,
T. S.
, 2002, “
Identification of Fibrous Cap Rupture with MRI Is Highly Associated with Recent Transient Ischemic Attack or Stroke
,”
Circulation
,
105
, pp.
181
185
.
3.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Beach
,
K. W.
,
Maravilla
,
K. R.
, 2001, “
Special Review: Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions
,”
Radiology
,
221
, pp.
285
299
.
4.
Fuster
,
V.
,
Cornhill
,
J. F.
,
Dinsmore
,
R. E.
,
Fallon
,
J. T.
,
Insull
,
W.
,
Libby
,
P.
,
Nissen
,
S.
,
Rosenfeld
,
M. E.
, and
Wagner
,
W. D.
, eds., 1998,
The Vulnerable Atherosclerotic Plaque: Understanding, Identification, and Modification
,
AHA Monograph Series, Futura Publishing
,
Armonk, NY
.
5.
Casscells
,
W.
,
Naghavi
,
M.
, and
Willerson
,
J.T.
, 2003, “
Vulnerable Atherosclerotic Plaque: A Multifocal Disease
,”
Circulation
107
, pp.
2072
2075
.
6.
Friedman
,
M. H.
,
Krams
,
R.
, and
Chandran
,
K. B.
, 2010, “
Flow Interactions with Cells and Tissues: Cardiovascular Flows and Fluid-Structure Interactions,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
1178
1187
.
7.
Tang
,
D.
,
Teng
,
Z.
,
Canton
,
G.
,
Yang
,
C.
,
Ferguson
,
M.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Yuan
,
C.
, 2009, “
Sites of Rupture in Human Atherosclerotic Carotid Plaques Are Associated with High Structural Stresses. An In Vivo MRI-Based 3D Fluid-Structure Interaction Study
,”
Stroke
,
40
, pp.
3258
3263
.
8.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bause
,
C. A. J.
, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
753
767
.
9.
Bluestein
,
D.
,
Alemu.
Y.
,
Avrahami
,
I.
,
Gharib
,
M.
,
Dumont
,
K.
,
Ricotta
,
J. J.
, and
Einav
,
S.
, 2008, “
Influence of Microcalcifications on Vulnerable Plaque Mechanics Using FSI Modeling
,”
J. Biomech.
,
41
(
5
), pp.
1111
1118
.
10.
Teng
,
Z.
,
Canton
,
G.
,
Yuan
,
C.
,
Ferguson
,
M.
,
Yang
,
C.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Tang
,
D.
, 2010, “
3D Critical Plaque Wall Stress is a Better Predictor of Carotid Plaque Rupture Sites than Flow Shear Stress: An In Vivo MRI-Based 3D FSI Study
,”
J. Biomech. Eng
,
132
(
3
), p.
031007
.
11.
Kaazempur-Mofrad
,
M. R.
,
Isasi
,
A. G.
,
Younis
,
H. F.
,
Chan
,
R. C.
,
Hinton
,
D. P.
,
Sukhova
,
G.
,
Lamuraglia
,
G. M.
,
Lee
,
R. T.
, and
Kamm
,
R. D.
, 2004, “
Characterization of the Atherosclerotic Carotid Bifurcation Using MRI, Finite Element Modeling, and Histology
,”
Ann. Biomed. Eng.
,
32
(
7
), pp.
932
946
.
12.
Suo
,
J.
,
Oshinski
,
J. N.
, and
Giddens
,
D. P.
, 2008, “
Blood Flow Patterns in the Proximal Human Coronary Arteries: Relationship to Atherosclerotic Plaque Occurrence
,”
Mol Cell Biomech.
,
5
(
1
):
9
18
.
13.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
O. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
,
C.
, 2004, “
3D MRI-Based Multi-Component FSI Models for Atherosclerotic Plaques a 3-D FSI model
,”
Ann. Biomed. Eng.
,
32
(
7
), pp.
947
960
.
14.
Li
,
Z. Y.
,
Howarth
,
S.
,
Trivedi
,
R. A.
,
U-King-Im
,
J. M.
,
Graves
,
M. J.
,
Brown
,
A.
,
Wang
,
L. Q.
, and
Gillard
,
J. H.
, 2006, “
Stress Analysis of Carotid Plaque Rupture Based on In Vivo High Resolution MRI
,”
J. Biomech.
,
39
, pp.
2611
2622
.
15.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
, 2004, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
,
126
(
5
), pp.
657
665
.
16.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.
17.
Williamson
,
S. D.
,
Lam
,
Y.
,
Younis
,
H. F.
,
Huang
,
H.
,
Patel
,
S.
,
Kaazempur-Mofrad
,
M. R.
, and
Kamm
,
R. D.
, 2003, “
On the Sensitivity of Wall Stresses in Diseased Arteries to Variable Material Properties
,”
ASME J. Biomech. Eng.
,
125
, pp.
147
155
.
18.
Schulze-Bauer
,
C. A. J.
and
Holzapfel
,
G. A.
, 2003, “
Determination of Constitutive Equations for Human Arteries from Clinical Data
,”
J. Biomech.
,
36
, pp.
165
169
.
19.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Sicard
,
G. A.
,
Pilgram
,
T. K.
, and
Yuan
,
C.
, 2005, “
Quantifying Effects of Plaque Structure and Material Properties on Stress Behaviors in Human Atherosclerotic Plaques Using 3D FSI Models
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1185
1194
.
20.
Lendon
,
C. L.
,
Davis
,
M. J.
,
Born
,
G. V. R.
, and
Richardson
,
P.D.
, 1991, “
Atherosclerotic Plaque Caps are Locally Weakened when Macrophage Density Is Increased
,”
Atherosclerosis
,
87
, pp.
87
90
.
21.
Lendon
,
C. L.
,
Davies
,
M. J.
,
Richardson
,
P. D.
, and
Born
,
G. V.
, 1993. “
Testing of Small Connective Tissue Specimens for the Determination of the Mechanical Behavior of Atherosclerotic Plaques
,”
J. Biomech. Eng.
,
15
(1)
,
27
33
.
22.
Barrett
,
S. R. H.
,
Sutcliffe
,
M. P. F.
,
Howarth
,
S.
,
Li
,
Z -Y.
, and
Gillard
,
J. H.
, 2009, “
Experimental Measurement of the Mechanical Properties of Carotid Atherothrombotic Plaque Fibrous Cap
,”
J. Biomech.
,
42
(
11
), pp.
1650
1655
.
23.
Teng
,
Z.
,
Tang
,
D.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Hoffman
,
A. H.
, 2009, “
An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human Atherosclerotic Carotid Arteries in Circumferential and Axial Directions
,”
J. Biomech.
,
42
(
15
), pp.
2535
2539
.
24.
Ohayon
,
J.
,
Dubreuil
,
O.
,
Tracqui
,
P.
,
Floc’h
,
S. L.
,
Rioufol
,
G.
,
Chalabreysse
,
L.
,
Thivolet
,
F.
,
Pettigrew
,
R. I.
, and
Finet
,
G.
, 2007, “
Influence of Residual Stress/Strain on the Biomechanical Stability of Vulnerable Coronary Plaques: Potential Impact for Evaluating the Risk of Plaque Rupture
,”
Am. J. Physiol. Heart Circ. Physiol.
,
293
, pp.
H1987
H1996
.
25.
Tang
,
D.
, 2006, “
Modeling Flow in Healthy and Stenosed Arteries
,”
Wiley Encyclopedia of Biomedical Engineering
,
M.
Akay
, ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
1
16
, 2006.
26.
Tang
,
D.
,
Yang
,
C.
,
Mondal
,
S.
,
Liu
,
F.
,
Canton
,
G.
,
Hatsukami
,
T. S.
, and
Yuan
,
C.
, 2008, “
A Negative Correlation Between Human Carotid Atherosclerotic Plaque Progression and Plaque Wall Stress: In Vivo MRI-Based 2D/3D FSI Models
,”
J. Biomech.
,
41
(
4
), pp.
727
736
.
27.
Yang
,
C.
,
Tang
,
D.
,
Yuan
,
C.
,
Hatsukami
,
T. S.
,
Zheng
,
J.
, and
Woodard
,
P. K.
, 2007, “
In Vivo/Ex Vivo MRI-Based 3D Models with Fluid-Structure Interactions for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models
,”
CMES: Computer Modeling in Engineering and Sciences
,
19
(
3
):
233
245
.
28.
Speelman
,
L.
,
Bosboom
,
E. M.
,
Schurink
,
G. W.
,
Buth
,
J.
,
Breeuwer
,
M.
,
Jacobs
,
M. J.
, and
van de Vosse
,
F. N.
, 2009, “
Initial Stress and Nonlinear Material Behavior in Patient-Specific AAA Wall Stress Analysis
,”
J. Biomech.
,
42
(
11
), pp.
1713
1719
.
29.
Gee
,
M. W.
,
Reeps
,
C.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
, 2009, “
Prestressing in Finite Deformation Abdominal Aortic Aneurysm Simulation
,”
J. Biomech.
,
42
(
11
), pp.
1732
1739
.
30.
Huang
,
Y.
,
Teng
,
Z.
,
Sadat
,
U.
,
Hilborne
,
S.
,
Young
,
V. E.
,
Graves
,
M. J.
,
Gillard
,
J. H.
, 2011, “
Non-Uniform Shrinkage for Obtaining Computational Start Shape for In-Vivo MRI Based Plaque Vulnerability Assessment
,”
J. Biomech.
,
44
(
12
), pp.
2316
2319
.
31.
Speelman
,
L.
,
Akyildiz
,
A. C.
,
den Adel
,
B.
,
Wentzel
,
J. J.
,
van der Steen
,
A. F.
,
Virmani
,
R.
,
van der Weerd
,
L.
,
Jukema
,
J. W.
,
Poelmann
,
R. E.
,
van Brummelen
,
E. H.
, and
Gijsen
,
F. J.
, 2011, “
Initial Stress in Biomechanical Models of Atherosclerotic Plaques
,”
J. Biomech.
,
44
(
13
), pp.
2376
2382
.
32.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, New York
, 2000.
33.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice Hall, Inc.
,
New Jersey
.
34.
Bathe
,
K. J.
, ed., 2002,
Theory and Modeling Guide, Vols. I and II: ADINA and ADINA-F
,
ADINA R & D, Inc.
,
Watertown, MA
.
35.
Yang
,
C.
,
Bach
,
R.
,
Zheng
,
J.
,
El Naqa
,
I.
,
Woodard
,
P. K.
,
Teng
,
Z. Z.
,
Billiar
,
K. L.
, and
Tang
,
D.
, 2009, “
In Vivo IVUS-Based 3D Fluid Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis
,”
IEEE Trans. Biomed. Eng.
,
56
(
10
), pp.
2420
2428
.
36.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics
,
Springer-Verlag
,
New York
.
37.
Kural
,
M. H.
,
Cai
,
M.
,
Tang
,
D.
,
Gwyther
,
T.
,
Zheng
,
J.
, and
Billiar
,
K. L.
, 2011, “
Planar Biaxial Characterization of Diseased Human Coronary and Carotid Arteries for Computational Modeling
,” J. Biomech. (in press).
You do not currently have access to this content.