Coronary stent design affects the spatial distribution of wall shear stress (WSS), which can influence the progression of endothelialization, neointimal hyperplasia, and restenosis. Previous computational fluid dynamics (CFD) studies have only examined a small number of possible geometries to identify stent designs that reduce alterations in near-wall hemodynamics. Based on a previously described framework for optimizing cardiovascular geometries, we developed a methodology that couples CFD and three-dimensional shape-optimization for use in stent design. The optimization procedure was fully-automated, such that solid model construction, anisotropic mesh generation, CFD simulation, and WSS quantification did not require user intervention. We applied the method to determine the optimal number of circumferentially repeating stent cells (NC) for slotted-tube stents with various diameters and intrastrut areas. Optimal stent designs were defined as those minimizing the area of low intrastrut time-averaged WSS. Interestingly, we determined that the optimal value of NC was dependent on the intrastrut angle with respect to the primary flow direction. Further investigation indicated that stent designs with an intrastrut angle of approximately 40 deg minimized the area of low time-averaged WSS regardless of vessel size or intrastrut area. Future application of this optimization method to commercially available stent designs may lead to stents with superior hemodynamic performance and the potential for improved clinical outcomes.

References

References
1.
Doyle
,
B.
,
Rihal
,
C. S.
,
O’Sullivan
,
C. J.
,
Lennon
,
R. J.
,
Wiste
,
H. J.
,
Bell
,
M.
,
Bresnahan
,
J.
, and
Holmes
,
D. R.
, 2007, “
Outcomes of Stent Thrombosis and Restenosis During Extended Follow-Up of Patients Treated With Bare-Metal Coronary Stents
,”
Circulation
,
116
(
21
), pp.
2391
2398
.
2.
James
,
S. K.
,
Stenestrand
,
U.
,
Lindbäck
,
J.
,
Carlsson
,
J.
,
Scherstén
,
F.
,
Nilsson
,
T.
,
Wallentin
,
L.
,
Lagerqvist
,
B.
, and
Group
,
S. S.
, 2009, “
Long-Term Safety and Efficacy of Drug-Eluting Versus Bare-Metal Stents in Sweden
,”
N. Engl. J. Med.
,
360
(
19
), pp.
1933
1945
.
3.
Stone
,
G. W.
,
Rizvi
,
A.
,
Sudhir
,
K.
,
Newman
,
W.
,
Applegate
,
R. J.
,
Cannon
,
L. A.
,
Maddux
,
J. T.
,
Cutlip
,
D. E.
,
Simonton
,
C. A.
,
Sood
,
P.
,
Kereiakes
,
D. J.
, and
Investigators
,
S. I.
, 2011, “
Randomized Comparison of Everolimus- and Paclitaxel-Eluting Stents. 2-Year Follow-Up From the SPIRIT (Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System) IV Trial
,”
J. Am. Coll. Cardiol.
,
58
(
1
), pp.
19
25
.
4.
Leon
,
M. B.
,
Kandzari
,
D. E.
,
Eisenstein
,
E. L.
,
Anstrom
,
K. J.
,
Mauri
,
L.
,
Cutlip
,
D. E.
,
Nikolsky
,
E.
,
O’Shaughnessy
,
C.
,
Overlie
,
P. A.
,
Kirtane
,
A. J.
,
McLaurin
,
B. T.
,
Solomon
,
S. L.
,
Douglas
,
J. S.
,
Popma
,
J. J.
, and
Investigators
,
E. I.
, 2009,“
Late Safety, Efficacy, and Cost-Effectiveness of a Zotarolimus-Eluting Stent Compared With a Paclitaxel-Eluting Stent in Patients With De Novo Coronary Lesions: 2-Year Follow-Up From the ENDEAVOR IV Trial (Randomized, Controlled Trial of the Medtronic Endeavor Drug [ABT-578] Eluting Coronary Stent System Versus the Taxus Paclitaxel-Eluting Coronary Stent System in De Novo Native Coronary Artery Lesions).
JACC Cardiovasc. Interv.
,
2
(
12
), pp.
1208
1218
.
5.
Finn
,
A. V.
,
Nakazawa
,
G.
,
Joner
,
M.
,
Kolodgie
,
F. D.
,
Mont
,
E. K.
,
Gold
,
H. K.
, and
Virmani
,
R.
, 2007, “
Vascular Responses to Drug Eluting Stents: Importance of Delayed Healing
,”
Arterioscler., Thromb., Vasc. Biol.
,
27
(
7
), pp.
1500
1510
.
6.
Joner
,
M.
,
Nakazawa
,
G.
,
Finn
,
A. V.
,
Quee
,
S. C.
,
Coleman
,
L.
,
Acampado
,
E.
,
Wilson
,
P. S.
,
Skorija
,
K.
,
Cheng
,
Q.
,
Xu
,
X.
,
Gold
,
H. K.
,
Kolodgie
,
F. D.
, and
Virmani
,
R.
, 2008, “
Endothelial Cell Recovery Between Comparator Polymer-Based Drug-Eluting Stents
,”
J. Am. Coll. Cardiol.
,
52
(
5
), pp.
333
342
.
7.
Kotani
,
J.
,
Awata
,
M.
,
Nanto
,
S.
,
Uematsu
,
M.
,
Oshima
,
F.
,
Minamiguchi
,
H.
,
Mintz
,
G. S.
, and
Nagata
,
S.
, 2006, “
Incomplete Neointimal Coverage of Sirolimus-Eluting Stents: Angioscopic Findings
,”
J. Am. Coll. Cardiol.
,
47
(
10
), pp.
2108
2111
.
8.
LaDisa
,
J. F.
,
Olson
,
L. E.
,
Molthen
,
R. C.
,
Hettrick
,
D. A.
,
Pratt
,
P. F.
,
Hardel
,
M. D.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2005, “
Alterations in Wall Shear Stress Predict Sites of Neointimal Hyperplasia After Stent Implantation in Rabbit Iliac Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
(
5
), pp.
H2465
2475
.
9.
and
Liu
,
S. Q.
and
Goldman
,
J.
, 2001, “
Role of Blood Shear Stress in the Regulation of Vascular Smooth Muscle Cell Migration
,”
IEEE Trans. Biomed. Eng.
,
48
(
4
), pp.
474
483
.
10.
Sprague
,
E. A.
,
Luo
,
J.
, and
Palmaz
,
J. C.
, 2000, “
Endothelial Cell Migration Onto Metal Stent Surfaces Under Static and Flow Conditions
,”
J. Long Term Eff. Med. Implants
,
10
(
1–2
), pp.
97
110
. Available at http://dl.begellhouse.com/journals/1bef42082d7a0fdf,10a09db02be3aae4,2689d22927f48a2a.html.
11.
LaDisa
,
J. F.
,
Olson
,
L. E.
,
Guler
,
I.
,
Hettrick
,
D. A.
,
Audi
,
S. H.
,
Kersten
,
J. R.
,
Warltier
,
D.
, and
C.Pagel
,
P. S.
, 2004, “
Stent Design Properties and Deployment Ratio Influence Indexes of Wall Shear Stress: A Three-Dimensional Computational Fluid Dynamics Investigation Within a Normal Artery
,”
J. Appl. Physiol.
,
97
(
1
), pp.
424
430
.
12.
He
,
Y.
,
Duraiswamy
,
N.
,
Frank
,
A. O.
, and
Moore
,
J. E.
, 2005, “
Blood Flow in Stented Arteries: A Parametric Comparison of Strut Design Patterns in three Dimensions
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
637
647
.
13.
Duraiswamy
,
N.
,
Schoephoerster
,
R. T.
, and
Moore
,
J. E.
, 2009, “
Comparison of Near-Wall Hemodynamic Parameters in Stented Artery Models
,”
ASME J. Biomech Eng
,
131
(
6
), p.
061006
.
14.
Murphy
,
J. B.
and
Boyle
,
F. J.
, 2010, “
A Full-Range, Multi-Variable, CFD-Based Methodology to Identify Abnormal Near-Wall Hemodynamics in a Stented Coronary Artery
,”
Biorheology
,
47
(
2
), pp.
117
132
.
15.
LaDisa
,
J. F.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Warltier
,
D. C.
,
Kersten
,
J. R.
, and
Pagel
,
P. S.
, 2005, “
Axial Stent Strut Angle Influences Wall Shear Stress After Stent Implantation: Analysis Using 3D Computational Fluid Dynamics Models of Stent Foreshortening
,”
Biomed. Eng. Online
,
4
, p.
59
.
16.
Gundert
,
T. J.
,
Shadden
,
S. C.
,
Williams
,
A. R.
,
Koo
,
B. K.
,
Feinstein
,
J. A.
, and
Ladisa
,
J. F.
, 2011, “
A Rapid and Computationally Inexpensive Method to Virtually Implant Current and Next-Generation Stents into Subject-Specific Computational Fluid Dynamics Models
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1423
1437
.
17.
Blouza
,
A.
,
Dumas
,
L.
, And
M’Baye
,
I.
, 2008,“
Multiobjective Optimization of a Stent in a Fluid-Structure Context
,”
Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Computation
,
ACM
, Atlanta, GA, USA, pp.
2055
2060
.
18.
Srinivas
,
K.
,
Nakayama
,
T.
,
Ohta
,
M.
,
Obayashi
,
S.
, and
Yamaguchi
,
T.
, 2008, “
Studies on Design Optimization of Coronary Stents
,”
ASME J Med. Devices
,
2
(
1
), p.
011004
.
19.
Atherton
,
M. A.
and
Bates
,
R. A.
, 2004, “
Robust Optimization of Cardiovascular Stents: A Comparison of Methods
,”
Eng. Optimiz.
,
36
(
2
), pp.
207
217
.
20.
Garasic
,
J. M.
,
Edelman
,
E. R.
,
Squire
,
J. C.
,
Seifert
,
P.
,
Williams
,
M. S.
, and
Rogers
,
C.
, 2000, “
Stent and Artery Geometry Determine Intimal Thickening Independent of Arterial Injury
,”
Circulation
,
101
(
7
), pp.
812
818
. Available at http://circ.ahajournals.org/content/101/7/812.
21.
LaDisa
,
J. F.
,
Hettrick
,
D. A.
,
Olson
,
L. E.
,
Guler
,
I.
,
Gross
,
E. R.
,
Kress
,
T. T.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2002, “
Stent Implantation Alters Coronary Artery Hemodynamics and Wall Shear Stress During Maximal Vasodilation
,”
J. Appl. Physiol.
,
93
(
6
), pp.
1939
1946
.
22.
Vignon-Clementel
,
I. E.
,
Alberto Figueroa
,
C.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.
23.
Ellwein
,
L.
,
Otake
,
H.
,
Gundert
,
T.
,
Koo
,
B.-K.
,
Shinke
,
T.
,
Honda
,
Y.
,
Shite
,
J.
, and
LaDisa
,
J.
, 2011, “
Optical Coherence Tomography for Patient-Specific 3D Artery Reconstruction and Evaluation of Wall Shear Stress in a Left Circumflex Coronary Artery
,”
Cardiovasc. Eng. Technol.
,
2
(
3
), pp.
212
227
.
24.
Williams
,
A. R.
,
Koo
,
B. K.
,
Gundert
,
T. J.
,
Fitzgerald
,
P. J.
, and
LaDisa
,
J. F.
, 2010, “
Local Hemodynamic Changes Caused by Main Branch Stent Implantation and Subsequent Virtual Side Branch Balloon Angioplasty in A Representative Coronary Bifurcation.
,”
J. Appl. Physiol.
,
109
(
2
), pp.
532
540
.
25.
Tang
,
B.
,
Cheng
,
C.
,
Draney
,
M.
,
Wilson
,
N.
,
Tsao
,
P.
,
Herfkens
,
R.
, and
Taylor
,
C.
, 2006, “
Abdominal Aortic Hemodynamics in Young Healthy Adults at Rest and During Lower Limb Exercise: Quantification Using Image-Based Computer Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
(
2
), pp.
H668
H676
.
26.
Glagov
,
S.
,
Weisenberg
,
E.
,
Zarins
,
C. K.
,
Stankunavicius
,
R.
, and
Kolettis
,
G. J.
, 1987, “
Compensatory Enlargement of Human Atherosclerotic Coronary Arteries
,”
N. Engl. J. Med.
,
316
(
22
), pp.
1371
1375
.
27.
Kamiya
,
A.
and
Togawa
,
T.
, 1980, “
Adaptive Regulation of Wall Shear Stress to Flow Change in the Canine Carotid Artery
,”
Am. J. Physiol. Heart Circ. Physiol.
,
239
(
1
), pp.
H14
H21
. Available at http://ajpheart.physiology.org/content/239/1/H14.abstract.
28.
Booker
,
A. J.
,
Dennis
,
J. E.
,
Frank
,
P. D.
,
Serafini
,
D. B.
,
Torczon
,
V.
, and
Trosset
,
M. W.
, 1999, “
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
,”
Struct. Multidiscip. Optimiz.
,
17
(
1
), pp.
1
13
.
29.
Marsden
,
A. L.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
, 2008, “
A Computational Framework for Derivative-Free Optimization of Cardiovascular Geometries
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
21–24
), pp.
1890
1905
.
30.
Audet
,
C.
and
Dennis
,
J. J. E.
, 2006, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,”
SIAM J. Optim.
,
17
(
1
), pp.
188
217
.
31.
Lophaven
,
S.
,
Nielsen
,
H.
,
Søndergaard
,
J.
, 2002,“
DACE - A MATLAB Kriging Toolbox Version 2.0
,” Technical University of Denmark, Copenhagen, Technical Report IMM-TR-2002-12M.
32.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W.
, 1979, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
33.
Rogers
,
C.
and
Edelman
,
E. R.
, 1995, “
Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis
,”
Circulation
,
91
(
12
), pp.
2995
3001
. Available at http://circ.ahajournals.org/content/91/12/2995.short.
34.
Pache
,
J.
,
Kastrati
,
A.
,
Mehilli
,
J.
,
Schühlen
,
H.
,
Dotzer
,
F.
,
Hausleiter
,
J.
,
Fleckenstein
,
M.
,
Neumann
,
F. J.
,
Sattelberger
,
U.
,
Schmitt
,
C.
,
Müller
,
M.
,
Dirschinger
,
J.
, and
Schömig
,
A.
, 2003,“
Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO-2) Trial
,”
J. Am. Coll. Cardiol.
,
41
(
8
), pp.
1283
1288
.
35.
Finn
,
A. V.
,
Kolodgie
,
F. D.
,
Harnek
,
J.
,
Guerrero
,
L. J.
,
Acampado
,
E.
,
Tefera
,
K.
,
Skorija
,
K.
,
Weber
,
D. K.
,
Gold
,
H. K.
, and
Virmani
,
R.
, 2005, “
Differential Response of Delayed Healing and Persistent Inflammation at Sites of Overlapping Sirolimus- or Paclitaxel-Eluting Stents
,”
Circulation
,
112
(
2
), pp.
270
278
.
36.
LaDisa
,
J. F.
,
Guler
,
I.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2003, “
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
,”
Ann. Biomed. Eng.
,
31
(
8
), pp.
972
980
.
37.
Balossino
,
R.
,
Gervaso
,
F.
,
Migliavacca
,
F.
, and
Dubini
,
G.
, 2008, “
Effects of Different Stent Designs on Local Hemodynamics in Stented Arteries
,”
J. Biomech.
,
41
(
5
), pp.
1053
1061
.
38.
LaDisa
,
J. F.
,
Olson
,
L. E.
,
Guler
,
I.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2005, “
Circumferential Vascular Deformation After Stent Implantation Alters Wall Shear Stress Evaluated With Time-Dependent 3D Computational Fluid Dynamics Models
,”
J. Appl. Physiol.
,
98
(
3
), pp.
947
957
.
39.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.
40.
Fletcher
,
R.
and
Leyffer
,
S.
, 2002, “
Nonlinear Programming Without a Penalty Function
,”
Math. Program.
,
91
(
2
), pp.
239
269
.
41.
Audet
,
C.
and
Dennis
,
J. J. E.
, 2004, “
A Pattern Search Filter Method for Nonlinear Programming Without Derivatives
,”
SIAM J. Optim.
,
14
(
4
), pp.
980
1010
.
42.
Yang
,
W.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
, 2010, “
Constrained Optimization of an Idealized Y-Shaped Baffle for the Fontan Surgery at Rest and Exercise
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
33–36
), pp.
2135
2149
.
43.
Longest
,
P. W.
and
Kleinstreuer
,
C.
, 2000, “
Computational Haemodynamics Analysis and Comparison Study of Arterio-Venous Grafts
,”
J. Med. Eng. Technol.
,
24
(
3
), pp.
102
110
.
44.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Truskey
,
G. A.
, 1996, “
A Focal Stress Gradient-Dependent Mass Transfer Mechanism for Atherogenesis in Branching Arteries
,”
Med. Eng. Phys.
,
18
(
4
), pp.
326
332
.
45.
He
,
X.
and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.
46.
Zahedmanesh
,
H.
and
Lally
,
C.
, 2009, “
Determination of the Influence of Stent Strut Thickness Using the Finite Element Method: Implications for Vascular Injury and In-Stent Restenosis
,”
Med. Biol. Eng. Comput.
,
47
(
4
), pp.
385
393
.
47.
Bedoya
,
J.
,
Meyer
,
C. A.
,
Timmins
,
L. H.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
, 2006, “
Effects of Stent Design Parameters on Normal Artery Wall Mechanics
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
757
765
.
48.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
, 2005, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis.
,”
J. Biomech.
,
38
(
8
), pp.
1574
1581
.
49.
Ako
,
J.
,
Bonneau
,
H. N.
,
Honda
,
Y.
, and
Fitzgerald
,
P. J.
, 2007, “
Design Criteria for the Ideal Drug-Eluting Stent
,”
Am. J. Cardiol.
,
100
(
8B
), pp.
3M
9M
.
50.
Timmins
,
L. H.
,
Moreno
,
M. R.
,
Meyer
,
C. A.
,
Criscione
,
J. C.
,
Rachev
,
A.
, and
Moore
,
J. E.
, 2007, “
Stented Artery Biomechanics and Device Design Optimization
,”
Med. Biol. Eng. Comput.
,
45
(
5
), pp.
505
513
.
51.
Balakrishnan
,
B.
,
Tzafriri
,
A. R.
,
Seifert
,
P.
,
Groothuis
,
A.
,
Rogers
,
C.
, and
Edelman
,
E. R.
, 2005, “
Strut Position, Blood Flow, and Drug Deposition: Implications for Single and Overlapping Drug-Eluting Stents
,”
Circulation
,
111
(
22
), pp.
2958
2965
.
52.
Murphy
,
J.
and
Boyle
,
F.
, 2008, “
Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational Fluid Dynamics Analyses of Implanted Coronary Stents
,”
IEEE Conf. Proc. Eng. Med. Biol. Soc.
,
2008
, pp.
5906
5909
.
You do not currently have access to this content.