Blood damage and thrombosis are major complications that are commonly seen in patients with implanted mechanical heart valves. For this in vitro study, we isolated the closing phase of a bileaflet mechanical heart valve to study near valve fluid velocities and stresses. By manipulating the valve housing, we gained optical access to a previously inaccessible region of the flow. Laser Doppler velocimetry and particle image velocimetry were used to characterize the flow regime and help to identify the key design characteristics responsible for high shear and rotational flow. Impact of the closing mechanical leaflet with its rigid housing produced the highest fluid stresses observed during the cardiac cycle. Mean velocities as high as 2.4 m/s were observed at the initial valve impact. The velocities measured at the leaflet tip resulted in sustained shear rates in the range of 1500–3500 s−1, with peak values on the order of 11,000–23,000 s−1. Using velocity maps, we identified regurgitation zones near the valve tip and through the central orifice of the valve. Entrained flow from the transvalvular jets and flow shed off the leaflet tip during closure combined to generate a dominant vortex posterior to both leaflets after each valve closing cycle. The strength of the peripheral vortex peaked within 2 ms of the initial impact of the leaflet with the housing and rapidly dissipated thereafter, whereas the vortex near the central orifice continued to grow during the rebound phase of the valve. Rebound of the leaflets played a secondary role in sustaining closure-induced vortices.

References

References
1.
Grigioni
,
M.
,
Daniele
,
C.
,
D’Avenio
,
G.
,
Morbiducci
,
U.
,
Del Gaudio
,
C.
,
Abbate
,
M.
, and
Di Meo
,
D.
, 2004,
“Innovative Technologies for the Assessment of Cardiovascular Medical Devices: State-of-the-Art Techniques for Artificial Heart Valve Testing,”
Expert Rev. Med. Devices
,
1
(
1
), pp.
81
93
.
2.
Herbertson
,
L. H.
,
Deutsch
,
S.
, and
Manning
,
K. B.
, 2008,
“Modifying a Tilting Disk Mechanical Heart Valve Design to Improve Closing Dynamics,”
J. Biomech. Eng.
,
130
(
5
), pp.
054503
-1-
4
.
3.
Yoganathan
,
A. P.
,
Chandran
,
K. B.
, and
Sotiropoulos
,
F.
, 2005,
“Flow in Prosthesis Heart Valves: State-of-the-Art and Future Directions,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1689
1694
.
4.
National Heart
,
Lung and Blood Institute
, 1985,
“National Heart, Lung and Blood Institute Working Group on Blood Materials Interactions: Guidelines for Blood-Material Interactions,”
NIH Paper, No. 85-2185.
5.
Sallam
,
A. M.
, and
Hwang
,
N. H.
, 1984,
“Human Red Blood Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stress,”
Biorheology
,
21
, pp.
783
797
.
6.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C.
, 1972,
“Red Blood Cell Damage by Shear Stress,”
Biophys. J.
,
12
(
3
), pp.
257
273
.
7.
Bluestein
,
D.
,
Yin
,
W.
,
Affeld
,
K.
, and
Jesty
,
J.
, 2004,
“Flow-Induced Platelet Activation in Mechanical Heart Valves,”
J. Heart Valve Dis.
,
13
(
3
), pp.
501
508
.
8.
Xenos
,
M.
,
Girdhar
,
G.
,
Alemu
,
Y.
,
Jesty
,
J.
,
Slepian
,
M.
,
Einav
,
S.
, and
Bluestein
,
D.
, 2010,
“Device Thrombogenecity Emulator (DTE) – Design Optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet MHV Designs,”
J. Biomech.
,
43
, pp.
2400
2409
.
9.
Nobili
,
M.
,
Sheriff
,
J.
,
Morbiducci
,
U.
,
Redaelli
,
A.
, and
Bluestein
,
D.
, 2008,
“Platelet Activation due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements,”
ASAIO J.
,
54
(
1
), pp.
64
72
.
10.
Scharfschwerdt
,
M.
,
Thomschke
,
M.
, and
Sievers
,
H. H.
, 2009,
“In-Vitro Localization of Initial Flow-Induced Thrombus Formation in Bileaflet Mechanical Heart Valves,”
ASAIO J.
,
55
(
1
), pp.
19
23
.
11.
Yoganathan
,
A. P.
,
Woo
,
Y.
, and
Sung
,
H.
, 1986,
“Turbulent Shear Stress Measurements in the Vicinity of Aortic Heart Valve Prostheses,”
J. Biomech.
,
19
, pp.
433
442
.
12.
Lamson
,
T. C.
,
Rosenberg
,
G.
,
Geselowitz
,
D. B.
,
Deutsch
,
S.
,
Stinebring
,
D. R.
,
Franson
,
J. A.
,
and
Tarbell
,
J. M.
, 1993,
“Relative Blood Damage in the Three Phases of a Prosthetic Heart Valve Flow Cycle,”
ASAIO J.
,
39
, pp.
M626
633
.
13.
Baldwin
,
J. T.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1994,
“LDA Measurements of Mean Velocity and Reynolds Stress Fields Within an Artificial Heart Ventricle,”
ASME J. Bioeng.
,
116
, pp.
190
200
.
14.
Maymir
,
J. C.
,
Deutsch
,
S.
,
Meyer
,
R. S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1998,
“Mean Velocity and Reynolds Stress Measurements in the Regurgitant Jets of Tilting Disk Heart Valves in an Artificial Heart Environment,”
Ann. Biomed. Eng.
,
26
(
1
), pp.
146
156
.
15.
Meyer
,
R. S.
, 1997,
“Three-Component Laser Doppler Velocimetry Measurements in the Vicinity of Mechanical Heart Valves in a Mock-Circulatory Loop,”
Ph.D. Thesis, The Pennsylvania State University, University Park, PA.
16.
Graf
,
T.
,
Fischer
,
H.
,
Reul
,
H.
, and
Rau
,
G.
, 1991,
“Cavitation Potential of Mechanical Heart Valve Prostheses,”
Int. J. Artif. Organs
,
14
(
3
), pp.
169
174
.
17.
Zapanta
,
C. M.
,
Stinebring
,
D. R.
,
Sneckenberger
,
D. S.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
,
Tarbell
,
J. M.
,
Snyder
,
A. J.
,
Rosenberg
,
G.
,
Weiss
,
W. J.
,
Pai
,
W. E.
, and
Pierce
,
W. S.
, 1996,
“In Vivo Observation on Prosthetic Heart Valves,”
ASAIO J.
,
42
(
5
), pp.
M550
555
.
18.
Hwang
,
N. H.
, 1998,
“Cavitation Potential of Pyrolytic Carbon Heart Valve Prostheses: A Review and Current Status,”
J. Heart Valve Dis.
,
7
(
2
), pp.
140
150
.
19.
Lee
,
C. S.
,
Chandran
,
K. B.
, and
Chen
,
L. D.
, 1996,
“Cavitation Dynamics of Medtronic Hall Mechanical Heart Valve Prosthesis: Fluid Squeezing Effect,”
J. Biomech. Eng.
,
118
, pp.
97
105
.
20.
Lo
,
C. W.
,
Lu
,
P. C.
,
Liu
,
J. S.
,
Li
,
C. P.
, and
Hwang
,
N. H.
, 2008,
“Squeeze Flow Measurements in Mechanical Heart Valves,”
ASAIO J.
,
54
(
2
), pp.
156
162
.
21.
Li
,
C. P.
,
Lu
,
P. C.
,
Liu
,
J. S.
,
Lo
,
C. W.
, and
Hwang
,
N. H.
, 2008,
“Role of Vortices in Cavitation Formation in the Flow Across a Mechanical Heart Valve,”
J. Heart Valve Dis.
,
17
(
4
), pp.
435
445
.
22.
Cheng
,
R.
,
Lai
,
Y. G.
, and
Chandran
,
K. B.
, 2004,
“Three-Dimensional Fluid-Structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics,”
Ann. Biomed. Eng.
,
32
(
11
), pp.
1471
1483
.
23.
Kaminsky
,
R.
,
Kallweit
,
S.
,
Weber
,
H. J.
,
Claessens
,
T.
,
Jozwik
,
K.
, and
Verdonck
,
P.
, 2007,
“Flow Visualization through Two Types of Aortic Prosthetic Heart Valves Using Stereoscopic High-Speed Particle Image Velocimetry,”
Artif. Organs
,
31
(
12
), pp.
869
879
.
24.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
, 2008,
“Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
276
297
.
25.
Akutsu
,
T.
,
Saito
,
J.
,
Imai
,
R.
,
Suzuki
,
T.
, and
Cao
,
X. D.
, 2008,
“Dynamic Particle Image Velocimetry Study of the Aortic Flow Field of Contemporary Mechanical Bileaflet Prostheses,”
J. Artif. Organs
,
11
(
2
), pp.
75
90
.
26.
Scharfschwerdt
,
M.
,
Thomschke
,
M.
, and
Sievers
,
H. H.
, 2009,
“In Vitro Localization of Initial Flow-Induced Thrombus Formation in Bileaflet Mechanical Heart Valves,”
ASAIO J.
,
55
(
1
), pp.
19
23
.
27.
Simon
,
H. A.
,
Ge
,
L.
,
Borazjani
,
I.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
, 2010,
“Simulation of the Three-Dimensional Hinge Flow Fields of a Bileaflet Mechanical Heart Valve Under Aortic Conditions,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
841
853
.
28.
Kvitting
,
J. P.
,
Dyverfeldt
,
P.
,
Sigfridsson
,
A.
,
Franzén
,
S.
,
Wigström
,
L.
,
Bolger
,
A. F.
, and
Ebbers
,
T.
, 2010,
“In Vitro Assessment of Flow Patterns and Turbulence Intensity in Prosthetic Heart Valves Using Generalized Phase-Contrast MRI,”
J. Magn. Reson. Imaging
,
31
(
5
), pp.
1075
1080
.
29.
Simon
,
H. A.
Ge
,
L.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A.P.
, 2010,
“Numerical Investigation of the Performance of Three Hinge Designs of Bileaflet Mechanical Heart Valves,”
Ann. Biomed. Eng.
,
38
(
11
), pp.
3295
3310
.
30.
Manning
,
K. B.
,
Herbertson
,
L. H.
,
Fontaine
,
A. A.
, and
Deutsch
,
S
, 2008,
“A Detailed Fluid Mechanics Study of Tilting Disk Mechanical Heart Valve Closure and the Implications to Blood Damage,”
J. Biomech. Eng.
,
130
(
4
), pp.
041001
-1-
4
.
31.
Carey
,
R. F.
,
Porter
,
J. M.
,
Richard
,
G.
,
Luck
,
C.
,
Shu
,
M. C.
,
Guo
,
G. X.
,
Elizondo
,
D. R.
,
Kingsbury
,
C.
,
Anderson
,
S.
, and
Herman
,
B. A.
, 1995,
“An Interlaboratory Comparison of the FDA Protocol for the Evaluation of Cavitation Potential of Mechanical Heart Valves,”
J. Heart Valve Dis.
,
4
(
5
), pp.
539
541
.
32.
Baldwin
,
J. T.
,
Deutsch
,
S.
,
Petrie
,
H. L.
, and
Tarbell
,
J. M.
, 1993,
“Determination of Principal Reynolds Stresses in Pulsatile Flows after Elliptical Filtering of Discrete Velocity Measurements,”
J. Biomech. Eng.
,
115
(
4A
), pp.
396
403
.
33.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2004,
“Fluid Dynamic Analysis of the 50 cc Penn State Artificial Heart under Physiological Operating Conditions Using Particle Image Velocimetry,”
J. Biomech. Eng.
,
126
(
5
), pp.
585
593
.
34.
Kini
,
V.
,
Bachmann
,
C.
,
Fontaine
,
A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2000,
“Flow Visualization in Mechanical Heart Valves: Occluder Rebound and Cavitation Potential,”
Ann. Biomed. Eng.
,
28
, pp.
431
441
.
35.
Otto
,
C. M.
, 2001,
“Clinical Practice: Evaluation and Management of Chronic Mitral Regurgitation,”
N. Engl. J. Med.
,
345
, pp.
740
746
.
36.
Pohl
,
M.
,
Wendt
,
M. O.
,
Werner
,
S.
,
Koch
,
B.
, and
Lerche
,
D.
, 1996,
“In Vitro Testing of Artificial Heart Valves: Comparison between Newtonian and Non-Newtonian Fluids,”
Artif. Organs
,
20
(
1
), pp.
37
46
.
37.
Govindarajan
,
V.
,
Udaykumar
,
H. S.
,
Herbertson
,
L. H.
,
Deutsch
,
S.
,
Manning
,
K. B.
, and
Chandran
,
K. B.
, 2010,
“Two-Dimensional FSI Simulation of Closing Dynamics of a Tilting Disk Mechanical Heart Valve,”
J. Med. Dev.
,
4
, pp.
011001
-1-
11
.
38.
Dohmen
,
G.
,
Schmitz
,
C.
,
Schmitz-Rode
,
T.
,
Steinseifer
,
U.
, and
Autschbach
,
R.
, 2006,
“Hemodynamics of High-Performance Bileaflet Valves: Comparison to Simulated Clinical Doppler Measurements,”
J Heart Valve Dis.
,
15
(
4
), pp.
549
556
.
39.
Simon
,
H. A.
,
Dasi
,
L. P.
,
Leo
,
H. L.
, and
Yoganathan
,
A. P.
, 2007,
“Spatio-Temporal Flow Analysis in Bileaflet Heart Valve Hinge Regions: Potential Analysis for Blood Element Damage,”
Ann. Biomed. Eng.
,
35
(
8
), pp.
1333
1346
.
You do not currently have access to this content.