Homogeneous contractility is usually assigned to the remote region, border zone (BZ), and the infarct in existing infarcted left ventricle (LV) mathematical models. Within the LV, the contractile function is therefore discontinuous. Here, we hypothesize that the BZ may in fact define a smooth linear transition in contractility between the remote region and the infarct. To test this hypothesis, we developed a mathematical model of a sheep LV having an anteroapical infarct with linearly–varying BZ contractility. Using an existing optimization method (Sun et al., 2009, “A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm,” J. Biomech. Eng., 131(11), pp. 111001), we use that model to extract active material parameter Tmax and BZ width dn that “best” predict in–vivo systolic strain fields measured from tagged magnetic resonance images (MRI). We confirm our hypothesis by showing that our model, compared to one that has homogeneous contractility assigned in each region, reduces the mean square errors between the predicted and the measured strain fields. Because the peak fiber stress differs significantly (∼15%) between these two models, our result suggests that future mathematical LV models, particularly those used to analyze myocardial infarction treatment, should account for a smooth linear transition in contractility within the BZ.

References

References
1.
Homans
,
D. C.
,
Asinger
,
R.
,
Elsperger
,
K. J.
,
Erlien
,
D.
,
Sublett
,
E.
,
Mikell
,
F.
, and
Bache
,
R. J.
, 1985,
“Regional Function and Perfusion at the Lateral Border of Ischemic Myocardium,”
Circulation
,
71
(
5
), pp.
1038
1047
.
2.
Sun
,
K.
,
Zhang
,
Z.
,
Suzuki
,
T.
,
Wenk
,
J. F.
,
Stander
,
N.
,
Einstein
,
D. R.
,
Saloner
,
D. A.
,
Wallace
,
A. W.
,
Guccione
,
J. M.
, and
Ratcliffe
,
M. B.
, 2010,
“Dor Procedure for Dyskinetic Anteroapical Myocardial Infarction Fails to Improve Contractility in the Border Zone,”
J. Thorac. Cardiovasc. Surg.
,
140
(
1
), pp.
233
239
.
3.
Moulton
,
M. J.
,
Downing
,
S. W.
,
Creswell
,
L. L.
,
Fishman
,
D. S.
,
Amsterdam
,
D. M.
,
Szabó
,
B. A.
,
Cox
,
J. L.
, and
Pasque
,
M. K.
, 1995,
“Mechanical Dysfunction in the Border Zone of an Ovine Model of Left Ventricular Aneurysm,”
Ann. Thorac. Surg.
,
60
(
4
), pp.
986
998
.
4.
Guccione
,
J. M.
,
Moonly
,
S. M.
,
Moustakidis
,
P.
,
Costa
,
K. D.
,
Moulton
,
M. J.
,
Ratcliffe
,
M. B.
, and
Pasque
,
M. K.
, 2001,
“Mechanism Underlying Mechanical Dysfunction in the Border Zone of Left Ventricular Aneurysm: A Finite Element Model Study,”
Ann. Thorac. Surg.
,
71
(
2
), pp.
654
662
.
5.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Fata
,
B.
Hsu
,
E. W.
,
Saloner
,
D.
, and
Guccione
,
J. M.
, 2005,
“MRI Based Finite Element Analysis of Left Ventricular Aneurysm,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
2
), pp.
H692
700
.
6.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Hsu
,
E. W.
,
Saloner
,
D.
, and
Guccione
,
J. M.
, 2008,
“Magnetic Resonance Imaging-Based Finite Element Stress Analysis After Linear Repair of Left Ventricular Aneurysm,”
J. Thorac. Cardiovasc. Surg.
,
135
(
5
), pp.
1094
1102
.
7.
Guccione
,
J. M.
,
Walker
,
J. C.
,
Beitler
,
J. R.
,
Moonly
,
S. M.
,
Zhang
,
P.
,
Guttman
,
M. A.
,
Ozturk
,
C.
,
McVeigh
,
E. R.
,
Wallace
,
A. W.
,
Saloner
,
D. A.
, and
Ratcliffe
,
M. B.
, 2006,
“The Effect of Anteroapical Aneurysm Plication on End-Systolic Three-Dimensional Strain in the Sheep: A Magnetic Resonance Imaging Tagging Study,”
J. Thorac. Cardiovasc. Surg.
,
131
(
3
), pp.
579
586
.
8.
Walker
,
J. C.
,
Guccione
,
J. M.
,
Jiang
,
Y.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Hsu
,
E. W.
, and
Ratcliffe
,
M. B.
, 2005,
“Helical Myofiber Orientation After Myocardial Infarction and Left Ventricular Surgical Restoration in Sheep,”
J. Thorac. Cardiovasc. Surg.
,
129
(
2
), pp.
382
390
.
9.
Costa
,
K. D.
,
Hunter
,
P. J.
,
Wayne
,
J. S.
,
Waldman
,
L. K.
,
Guccione
,
J. M.
, and
McCulloch
,
A. D.
, 1996,
“A Three-Dimensional Finite Element Method for Large Elastic Deformations of Ventricular Myocardium: II-Prolate Spheroidal Coordinates,”
J. Biomech. Eng
,
118
(
4
), pp.
464
472
.
10.
Sun
,
K.
,
Stander
,
N.
,
Jhun
,
C. S.
,
Zhang
,
Z.
,
Suzuki
,
T.
,
Wang
,
G. Y.
,
Saeed
,
M.
,
Wallace
,
A. W.
,
Tseng
,
E. E.
,
Baker
,
A. J.
,
Saloner
,
D.
,
Einstein
,
D. R.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
, 2009,
“A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm,”
J. Biomech. Eng.
,
131
(
11
), p.
111001
.
11.
Wenk
,
J. F.
,
Sun
,
K.
,
Zhang
,
Z.
,
Soleimani
,
M.
,
Ge.
,
L.
,
Saloner
,
D.
,
Wallace
,
A. W.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
, 2011,
“Regional Left Ventricular Myocardial Contractility and Stress in a Finite Element Model of Posterobasal Myocardial Infarction,”
J. Biomech. Eng.
,
133
(
4
),
p.
044501
.
12.
Zhang
,
P.
,
Guccione
,
J. M.
,
Nicholas
,
S. I.
,
Walker
,
J. C.
,
Crawford
,
P. C.
,
Shamal
,
A.
,
Acevedo-Bolton
,
G.
,
Guttman
,
M. A.
,
Ozturk
,
C.
,
McVeigh
,
E. R.
,
Saloner
,
D. A.
,
Wallace
,
A. W.
, and
Ratcliffe
,
M. B.
, 2007,
“Endoventricular Patch Plasty for Dyskinetic Anteroapical Left Ventricular Aneurysm Increases Systolic Circumferential Shortening in Sheep
,”
J. Thorac. Cardiovasc. Surg.
,
134
(
4
), pp.
1017
1024
.
13.
Guccione
,
J. M.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
, 1993,
“Mechanics of Active Contraction in Cardiac Muscle: Part II—Cylindrical Models of the Systolic Left Ventricle,”
J. Biomech. Eng.
,
115
(
1
), pp.
82
90
.
14.
Declerck
,
J.
,
Denney
,
T. S.
,
Ozturk
,
C.
,
O’Dell
,
W.
, and
McVeigh
,
E. R.
, 2000,
“Left Ventricular Motion Reconstruction From Planar Tagged MR Images: A Comparison,”
Phys. Med. Biol.
,
45
(
6
), pp.
1611
1632
.
15.
Denney
,
T. S.
, Jr.
,
Gerber
,
B. L.
, and
Yan
,
L.
, 2003,
“Unsupervised Reconstruction of a Three-Dimensional Left Ventricular Strain From Parallel Tagged Cardiac Images.”
Magn. Reson. Med.
,
49
(
4
), pp.
743
754
.
16.
Yan
,
A. T.
,
Shayne
,
A. J.
,
Brown
,
K. A.
,
Gupta
,
S. N.
,
Chan
,
C. W.
,
Tuan
,
M. L.
,
Carli
,
M. F. D.
,
Reynolds
,
G.
,
Stevenson
,
W. G.
, and
Kwong
,
R. Y.
, 2006,
“Characterization of the Peri-Infarct Zone by Contrast-Enhanced Cardiac Magnetic Resonance Imaging is a Powerful Predictor of Post-Myocardial Infarction Mortality,”
Circulation
,
114
(
1
), pp.
32
39
.
17.
Sarnoff
,
S. J.
,
Braunwald
,
E.
,
Welch
,
G. H.
, Jr.
,
Case
,
R. B.
,
Stainsby
,
W. N.
, and
Macrus
,
R.
, 1958,
“Hemo-Dynamic Determinants of Oxygen Consumption of the Heart With Special Reference to the Tension-Time Index,”
Am. J. Physiol.
,
192
(
1
), pp.
148
156
.
18.
Grossman
,
W.
, 1980,
“Cardiac Hypertrophy: Useful Adaptation or Pathologic Process?,”
Am. J. Med.
,
69
(
4
), pp.
576
584
.
19.
Göktepe
,
S.
,
Abilez
,
O. J.
,
Parker
,
K. K.
, and
Kuhl
,
E.
, 2010,
“A Multiscale Model for Eccentric and Concentric Cardiac Growth Through Sarcomerogenesis,”
J. Theor. Biol.
,
265
(
3
), pp.
433
442
.
20.
Rausch
,
M. K.
,
Dam
,
A.
,
Göktepe
,
S.
,
Abilez
,
O. J.
, and
Kuhl
,
E.
, 2011,
“Computational Modeling of Growth: Systemic and Pulmonary Hypertension in the Heart,”
Biomech. Model. Mechanobiol.
(in press).
21.
Guccione
,
J. M.
,
Salahieh
,
A.
,
Moonly
,
S. M.
,
Kortsmit
,
J.
,
Wallace
,
A. W.
, and
Ratcliffe
,
M. B.
, 2003,
“Myosplint Decreases Wall Stress Without Depressing Function in the Failing Heart: A Finite Element Model Study
,”
Ann. Thorac. Surg.
,
76
(
4
), pp.
1171
1180
.
22.
Wenk
,
J. F.
,
Wall
,
S. T.
,
Peterson
,
R. C.
,
Helgerson
,
S. L.
,
Sabbah
,
H. N.
,
Burger
,
M.
,
Stander
,
N.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
, 2009,
“A Method for Automatically Optimizing Medical Devices for Treating Heart Failure: Designing Polymeric Injection Patterns,”
J. Biomech. Eng.
,
131
(
12
),
p.
121011
.
You do not currently have access to this content.