Vertebral burst fractures are commonly studied with experimental animal models. There is however a lack of consensus as to what parameters are important to create an unstable burst fracture with a significant canal encroachment on such model. This study aims to assess the effect of the loading rate, flexion angle, spinal level, and their interactions on the production of a vertebral thoracolumbar burst fracture on a porcine model. Sixteen functional spinal units composed of three vertebrae were harvested from mature Yucatan minipigs. Two loading rates (0.01 and 500 mm/s), two flexion angles (0° and 15°), and two spinal levels (T11-T13 and T14-L2) were studied, following a full factorial experimental plan with one repetition. Compression was applied to each functional unit to create a vertebral fracture. The load-to-failure, loss of compressive stiffness, final canal encroachment, and fracture type were used as criteria to evaluate the resulting fracture. All specimens compressed without flexion resulted in burst fractures. Half of the specimens compressed with the 15° flexion angle resulted in compression fractures. Specimens positioned without flexion lost more of their compressive stiffness and had more significant canal encroachment. Fractured units compressed with a higher loading rate resulted in a greater loss of compressive stiffness. The spinal level had no significant effect on the resulting fractures. The main parameters which affect the resulting fracture are the loading rate and the flexion angle. A higher loading rate and the absence of flexion favors the production of burst fractures with a greater canal encroachment.

References

References
1.
Vaccaro
,
A. R.
,
Kim
,
D. H.
,
Brodke
,
D. S.
,
Harris
,
M.
,
Chapman
,
J.
,
Schildhauer
,
T.
,
Chip Routt
,
M. L.
, and
Sasso
,
R. C.
, 2003, “
Diagnosis and Management of Thoracolumbar Spine Fractures
,”
The Journal of Bone and Joint Surgery
,
85
, pp.
2456
2470
.
2.
Van Der Roer
,
N.
,
De Bruyne
,
M. C.
,
Bakker
,
F. C.
,
Van Tulder
,
M. W.
, and
Boers
,
M.
, 2005, “
Direct Medical Costs of Traumatic Thoracolumbar Spine Fractures
,”
Acta Orthopedics
,
76
(
5
), pp.
662
666
.
3.
Atlas
,
O. K.
,
Dodds
,
S. D.
, and
Panjabi
,
M. M.
, 2003, “
Single and Incremental Trauma Models: A Biomechanical Assessment of Spinal Instability
,”
European Spine Journal
,
12
(
2
), pp.
205
210
.
4.
Cotterill
,
P. C.
,
Kostuik
,
J. P.
,
Wilson
,
J. A.
,
Fernie
,
G. R.
, and
Maki
,
B. E.
, 1987, “
Production of a Reproducible Spinal Burst Fracture for Use in Biomechanical Testing
,”
Journal of Orthopedic Research
,
5
(
3
), pp.
462
465
.
5.
Kifune
,
M.
,
Panjabi
,
M. M.
,
Arand
,
M.
, and
Liu
,
W.
, 1995, “
Fracture Pattern and Instability of Thoracolumbar Injuries
,”
European Spine Journal
,
4
(
2
), pp.
98
103
.
6.
Panjabi
,
M. M.
,
Hoffman
,
H.
,
Kato
,
Y.
, and
Cholewicki
,
J.
, 2000, “
Superiority of Incremental Trauma Approach in Experimental Burst Fracture Studies
,”
Clinical Biomechanics (Bristol, Avon)
,
15
(
2
), pp.
73
78
.
7.
Lundin
,
O.
,
Ekstrom
,
L.
,
Hellstrom
,
M.
,
Holm
,
S.
, and
Sward
,
L.
, 2000, “
Exposure of the Porcine Spine to Mechanical Compression: Differences in Injury Pattern between Adolescents and Adults
,”
European Spine Journal
,
9
(
6
), pp.
466
471
.
8.
Russell
,
G.
,
Lavoie
,
G.
,
Evenson
,
R.
,
Moreau
,
M.
,
Budney
,
D.
, and
Raso
,
V. J.
, 1992, “
A Reproducible Porcine Vertebral Fracture for Biomechanical Testing of Spinal Fixation Devices
,”
Clinical Orthopedic and Related Research
,
284
, pp.
267
272
.
9.
Turker
,
M.
,
Tezeren
,
G.
,
Tukenmez
,
M.
, and
Percin
,
S.
, 2005, “
Indirect Spinal Canal Decompression of Vertebral Burst Fracture in Calf Model
,”
Arch Orthopedic Trauma Surgery
,
125
(
5
), pp.
336
341
.
10.
Wilcox
,
R. K.
,
Allen
,
D. J.
,
Hall
,
R. M.
,
Limb
,
D.
,
Barton
,
D. C.
, and
Dickson
,
R. A.
, 2004, “
A Dynamic Investigation of the Burst Fracture Process Using a Combined Experimental and Finite Element Approach
,”
European Spine Journal
,
13
(
6
), pp.
481
488
.
11.
Zhu
,
Q.
,
Lane
,
C.
,
Ching
,
R. P.
,
Gordon
,
J. D.
,
Fisher
,
C. G.
,
Dvorak
,
M. F.
,
Cripton
,
P. A.
, and
Oxland
,
T. R.
, 2008, “
Translational Constraint Influences Dynamic Spinal Canal Occlusion of the Thoracic Spine: An in Vitro Experimental Study
,”
J. Biomech.
,
41
(
1
), pp.
171
179
.
12.
Baranto
,
A.
,
Ekstrom
,
L.
,
Hellstrom
,
M.
,
Lundin
,
O.
,
Holm
,
S.
, and
Sward
,
L.
, 2005, “
Fracture Patterns of the Adolescent Porcine Spine: An Experimental Loading Study in Bending-Compression
,”
Spine
,
30
(
1
), pp.
75
82
.
13.
Panjabi
,
M. M.
,
Kato
,
Y.
,
Hoffman
,
H.
, and
Cholewicki
,
J.
, 2001, “
Canal and Intervertebral Foramen Encroachments of a Burst Fracture: Effects from the Center of Rotation
,”
Spine
,
26
(
11
), pp.
1231
1237
.
14.
Aerssens
,
J.
,
Boonen
,
S.
,
Lowet
,
G.
, and
Dequeker
,
J.
, 1998, “
Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for in Vivo Bone Research
,”
Endocrinology
,
139
(
2
), pp.
663
670
.
15.
Dath
,
R.
,
Ebinesan
,
A. D.
,
Porter
,
K. M.
, and
Miles
,
A. W.
, 2007, “
Anatomical Measurements of Porcine Lumbar Vertebrae
,”
Clinical Biomechanics (Bristol, Avon)
,
22
(
5
), pp.
607
613
.
16.
Inui
,
A.
,
Itamoto
,
K.
,
Takuma
,
T.
,
Tsutsumi
,
H.
,
Tanigawa
,
M.
,
Hayasaki
,
M.
,
Taura
,
Y.
, and
Mamba
,
K.
, 2004, “
Age-Related Changes of Bone Mineral Density and Microarchitecture in Miniature Pigs
,”
J. Vet. Med. Sci.
,
66
(
6
), pp.
599
609
.
17.
Mclain
,
R. F.
,
Yerby
,
S. A.
, and
Moseley
,
T. A.
, 2002, “
Comparative Morphometry of L4 Vertebrae: Comparison of Large Animal Models for the Human Lumbar Spine
,”
Spine
,
27
(
8
), pp.
E200
E206
.
18.
Box
,
G. E. P.
,
Hunter
,
W. G.
, and
Hunter
,
J. S.
, 1978,
Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building
,
Wiley
,
New York
.
19.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P.
, 2000, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc
,”
Spine
,
25
(
6
), pp.
662
669
.
20.
Keene
,
J. S.
,
Fischer
,
S. P.
,
Vanderby
,
R.
, Jr.
,
Drummond
,
D. S.
, and
Turski
,
P. A.
, 1989, “
Significance of Acute Posttraumatic Bony Encroachment of the Neural Canal
,”
Spine
,
14
(
8
), pp.
799
802
.
21.
Denis
,
F.
, 1983, “
The Three Column Spine and Its Significance in the Classification of Acute Thoracolumbar Spinal Injuries
,”
Spine
,
8
(
8
), pp.
817
831
.
You do not currently have access to this content.