In a previous work (Raghupathy and Barocas, 2010, “Generalized Anisotropic Inverse Mechanics for Soft Tissues,”J. Biomech. Eng., 132(8), pp. 081006), a generalized anisotropic inverse mechanics method applicable to soft tissues was presented and tested against simulated data. Here we demonstrate the ability of the method to identify regional differences in anisotropy from full-field displacements and boundary forces obtained from biaxial extension tests on soft tissue analogs. Tissue heterogeneity was evaluated by partitioning the domain into homogeneous subdomains. Tests on elastomer samples demonstrated the performance of the method on isotropic materials with uniform and nonuniform properties. Tests on fibroblast-remodeled collagen cruciforms indicated a strong correlation between local structural anisotropy (measured by polarized light microscopy) and the evaluated local mechanical anisotropy. The results demonstrate the potential to quantify regional anisotropic material behavior on an intact tissue sample.

References

References
1.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
, 2010,
“Tensile Properties and Fiber Alignment of Human Supraspinatus Tendon in the Transverse Direction Demonstrate Inhomogeneity, Nonlinearity, and Regional Isotropy,”
J. Biomech.
,
43
(
4
), pp.
727
732
.
2.
Insana
,
M. F.
and
Bamber
,
J. C.
(ed), 2000,
“Tissue Motion and Elasticity Imaging,”
Phys. Med. Biol.
,
54
(
3
), pp.
1409
1713
.
3.
Richards
,
M. S.
,
Barbone
,
P. E.
, and
Oberai
,
A. A.
, 2009,
“Quantitative Threedimensional Elasticity Imaging from Quasi-Static Deformation: A Phantom Study,”
Phys. Med. Biol.
,
54
(
3
), p.
757
779
.
4.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
, 2009,
“Image-based Multiscale Modeling Predicts Tissue-Level and Network-Level Fiber Reorganization in Stretched Cell-Compacted Collagen Gels,”
Proc. Natl. Acad.Sci. U. S. A.
,
106
(
42
), pp.
17675
17680
.
5.
Stella
,
J. A.
, and
Sacks
,
M. S.
, 2007,
“On the Biaxial Mechanical Properties of the Layers of the Aortic Valve Leaflet,”
J. Biomech. Eng.
,
129
(
5
), pp.
757
766
.
6.
Doehring
,
T. C.
,
Kahelin
,
M.
, and
Vesely
,
I.
, 2005,
“Mesostructures of the Aortic Valve,”
J. Heart Valve Dis.
,
14
(
5
), pp.
679
686
.
7.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
, 2008,
“Altered Collagen Fiber Kinematics Define the Onset of Localized Ligament Damage During Loading,”
J, Appl, Physiol
,
105
(
6
), pp.
1881
1888
.
8.
Ott
,
H. C.
,
Matthiesen
,
T. S.
,
Goh
,
S.-K.
,
Black
,
L. D.
,
Kren
,
S. M.
,
Netoff
,
T. I.
, and
Taylor
,
D. A.
, 2008,
“Perfusion-Decellularized Matrix: Using Nature’s Platform to Engineer a Bioartificial Heart,”
Nat. Med.
,
14
(
2
), pp.
213
221
.
9.
Raghupathy
,
R.
and
Barocas
,
V. H.
, 2010,
“Generalized Anisotropic Inverse Mechanics for Soft Tissues,”
J. Biomech. Eng.
,
132
(
8
), p.
081006
.
10.
Jhun
,
C. S.
,
Evans
,
M. C.
,
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
, 2009,
“Planar Biaxial Mechanical Behavior of Bioartificial Tissues Possessing Prescribed Fiber Alignment,”
J. Biomech. Eng.
,
131
(
8
), p.
081006
.
11.
Sander
,
E.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R.
, and
Barocas
,
V.
, 2009,
“Image-Based Biomechanics of Collagen-Based Tissue Equivalents,”
IEEE Eng. Med. Biol. Mag.
,
28
(
3
), pp.
10
18
.
12.
Sander
,
E. A.
,
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
, 2010,
“Initial Fiber Alignment Pattern Alters Extracellular Matrix Synthesis in Fibroblast-Populated Fibrin Gel Cruciforms and Correlates with Predicted Tension,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
714
729
.
13.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
, 2002,
“Fiber Alignment Imaging During Mechanical Testing of Soft Tissues,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1221
1233
.
14.
Pan
,
B.
,
Asundi
,
A.
,
Xie
,
H.
, and
Gao
,
J.
, 2009,
“Digital Image Correlation Using Iterative Least Squares and Pointwise Least Squares for Displacement Field and Strain Field Measurements,”
Optics and Lasers in Engineering
,
47
(
7-8
), pp.
865
874
.
15.
Sun
,
W.
,
Sacks
,
M. S.
, and
Scott
,
M. J.
, 2005,
“Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues,”
J. Biomech. Eng.
,
127
(
4
), pp.
709
715
.
16.
O’Connell
,
G. D.
,
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
“Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration,”
J. Biomech. Eng.
131
(
11
), pp.
111007
.
17.
Thomson
,
W.
, 1856,
“Elements of a Mathematical Theory of Elasticity,”
Phil. Trans. R. Soc. London
,
146
, pp.
481
498
.
18.
Mehrabadi
,
M. M.
, and
Cowin
,
S. C.
, 1990,
“Eigentensors of Linear Anisotropic Elastic Materials,”
Q. J. Mech. Appl. Math.
,
43
(
1
), pp.
15
41
.
19.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
, 1995,
“Anisotropic Symmetries of Linear Elasticity,”
Appl. Mech. Rev.
,
48
(
5
), pp.
247
285
.
You do not currently have access to this content.