In this work we present test methods, devices, and preliminary results for the mechanical characterization of the small bowel for intra luminal robotic mobility. Both active and passive forces that affect mobility are investigated. Four investigative devices and testing methods to characterize the active and passive forces are presented in this work: (1) a novel manometer and a force sensor array that measure force per cm of axial length generated by the migrating motor complex, (2) a biaxial test apparatus and method for characterizing the biomechanical properties of the duodenum, jejunum, and ileum, (3) a novel in vitro device and protocol designed to measure the energy required to overcome the self-adhesivity of the mucosa, and (4) a novel tribometer that measures the in vivo coefficient of friction between the mucus membrane and the robot surface. The four devices are tested on a single porcine model to validate the approach and protocols. Mean force readings per cm of axial length of intestine that occurred over a 15 min interval in vivo were 1.34 ± 0.14 and 1.18 ± 0.22 N cm−1 in the middle and distal regions, respectively. Based on the biaxial stress/stretch tests, the tissue behaves anisotropically with the circumferential direction being more compliant than the axial direction. The mean work per unit area for mucoseparation of the small bowel is 0.08 ± 0.03 mJ cm−2. The total energy to overcome mucoadhesion over the entire length of the porcine small bowel is approximately 0.55 J. The mean in vivo coefficient of friction (COF) of a curved 6.97 cm2 polycarbonate sled on live mucosa traveling at 1 mm s−1 is 0.016 ± 0.002. This is slightly lower than the COF on excised tissue, given the same input parameters. We have initiated a comprehensive program and suite of test devices and protocols for mechanically characterizing the small bowel for in vivo mobility. Results show that each of the four protocols and associated test devices has successfully gathered preliminary data to confirm the validity of our test approach.

References

References
1.
Welling
,
P.
, 1991,
Pharmaceutical Bioequivalence
,
Dekker
,
New York
.
2.
Phee
,
L.
,
Accoto
,
D.
,
Menciassi
,
A.
,
Stefanini
,
C.
,
Carrozza
,
M. C.
, and
Dario
,
P.
, 2002, “
Analysis and Development of Locomotion Devices for the Gastrointestinal Tract
,”
IEEE Trans. Biomed. Eng.
,
49
(
6
), pp.
613
616
.
3.
Ciarletta
,
P.
,
Dario
,
P.
,
Tendick
,
F.
, and
Micera
,
S.
, 2009, “
Hyperelastic Model of Anisotropic Fiber Reinforcements Within Intestinal Walls for Applications in Medical Robotics
,”
Int. J. Robot. Res.
,
28
(
10
), pp.
1279
1288
.
4.
McGee
,
M. F.
,
Rosen
,
M. J.
,
Marks
,
J.
,
Onders
,
R. P.
,
Chak
,
A.
,
Faulx
,
A.
,
Chen
,
V. K.
, and
Ponsky
,
J.
, 2006, “
A Primer on Natural Orifice Transluminal Endoscopic Surgery: Building a New Paradigm
,”
Surg. Innov.
,
13
(
2
), pp.
86
93
.
5.
Quirini
,
M.
,
Menciassi
,
A.
,
Scapellato
,
S.
,
Dario
,
P.
,
Rieber
,
F.
,
Ho
C.-N.
,
Schostek
,
S.
, and
Schurr
,
M. O.
, 2008, “
Feasibility Proof of a Legged Locomotion Capsule for the GI Tract
,”
Gastrointest. Endosc.
,
67
(
7
), pp.
1153
1158
.
6.
Glass
,
P.
,
Cheung
,
E.
, and
Sitti
,
M.
, 2008, “
A Legged Anchoring Mechanism for Capsule Endoscopes Using Micropatterned Adhesives
,”
IEEE Trans. Biomed. Eng.
,
55
(
12
), pp.
2759
2767
.
7.
Wang
,
K.
,
Yan
,
G.
,
Ma
,
G.
, and
Ye
,
D.
, 2009, “
An Earthworm-Like Robotic Endoscope System for Human Intestine: Design, Analysis, and Experiment
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
210
221
.
8.
Dodou
,
D.
,
Breedveld
,
P.
, and
Wieringa
,
P.
, 2005, “
Friction Manipulation for Intestinal Locomotion
,”
Minimally Invasive Ther. Allied Technol.
,
14
(
3
), pp.
188
197
.
9.
Dodou
,
D.
,
van den Berg
,
M.
,
van Gennip
,
J.
,
Breedveld
,
P.
, and
Wieringa
,
P. A.
, 2008, “
Mucoadhesive Films Inside the Colonic Tube: Performance in a Three-Dimensional World
,”
J. R. Soc., Interface
,
5
(
28
), pp.
1353
1362
.
10.
Harding
,
S. E.
, 2003, “
Mucoadhesive Interactions
,”
Biochem. Soc. Trans.
,
31
(Pt
5
), pp.
1036
1041
.
11.
Miftahof
,
R. N.
, 2005, “
The Wave Phenomena in Smooth Muscle Syncytia
,”
In Silico Biol. (Gedrukt)
,
5
(
5-6
), pp.
479
498
.
12.
Mortazavi
,
S.
, and
Smart
,
J.
, 1995, “
An Investigation of Some Factors Influencing the In-vitro Assessment of Mucoadhesion
,”
Int. J. Pharm.
,
116
(
2
), pp.
223
230
.
13.
Hoeg
,
H. D.
,
Slatkin
,
A. B.
,
Burdick
,
J. W.
, and
Grundfest
,
W. S.
, 2000, “
Biomechanical Modeling of the Small Intestine as Required for the Design and Operation of a Robotic Endoscope
,” Proceedings. ICRA’00.
IEEE International Conference on Robotics and Automation
,
2
, pp.
1599
1606
.
14.
Higa
,
M.
,
Luo
,
Y.
,
Okuyama
,
T.
, and
Takagi
,
T.
, 2007, “
Characterization of the Passive Mechanical Properties of Large Intestine
,”
Int. J. Appl. Electromagn. Mech.
,
25
(
1/4
), pp.
595
599
.
15.
Macagno
,
E. O.
, and
Christensen
,
J.
, 1980, “
Fluid Mechanics of the Duodenum
,”
Annu. Rev. Fluid Mech.
,
12
(
1
), pp.
139
158
.
16.
Egorov
,
V. I.
,
Schastlivtsev
,
I. V.
,
Prut
,
E. V.
,
Baranov
,
A. O.
, and
Turusov
,
R. A.
, 2002, “
Mechanical Properties of the Human Gastrointestinal Tract
,”
J. Biomech.
,
35
(
10
), pp.
1417
1425
.
17.
Jørgensen
,
C. S.
,
Assentoft
,
J. E.
,
Knauss
,
D.
,
Gregersen
,
H.
, and
Briggs
,
G. A. D.
, 2001, “
Small Intestine Wall Distribution of Elastic Stiffness Measured With 500 MHz Scanning Acoustic Microscopy
,”
Ann. Biomed. Eng.
,
29
(
12
), pp.
1059
1063
.
18.
Clinton Texter
,
E.
, 1968, “
Pressure and Transit in the Small Intestine
,”
Dig. Dis. Sci.
,
13
(
5
), pp.
443
454
.
19.
Samsom
,
M.
,
Smout
,
A. J.
,
Hebbard
,
G.
,
Fraser
,
R.
,
Omari
,
T.
,
Horowitz
,
M.
, and
Dent
,
J.
, 1998, “
A Novel Portable Perfused Manometric System for Recording of Small Intestinal Motility
,”
Neurogastroenterol. Motil.
,
10
(
2
), pp.
139
148
.
20.
Scott
,
S. M.
, 2003, “
Manometric Techniques for the Evaluation of Colonic Motor Activity: Current Status
,”
Neurogastroenterol. Motil.
,
15
(
5
), pp.
483
513
.
21.
Widmer
,
R.
,
Schmidt
,
T.
,
Pfeiffer
,
A.
, and
Kaess
,
H.
, 1994, “
Computerized Analysis of Ambulatory Long-Term Small-Bowel Manometry
,”
Scand. J. Gastroenterol. Suppl.
,
29
(
12
), pp.
1076
1082
.
22.
Schmidt
,
T.
,
Pfeiffer
,
A.
,
Hackelsberger
,
N.
,
Widmer
,
R.
,
Meisel
,
C.
, and
Kaess
,
H.
, 1996, “
Effect of Intestinal Resection on Human Small Bowel Motility
,”
Gut
,
38
(
6
), pp.
859
863
.
23.
Ahluwalia
,
N.
,
Thompson
,
D.
,
Barlow
,
J.
, and
Heggie
,
L.
, 1994, “
Human Small–Intestinal Contractions and Aboral Traction Forces During Fasting and After Feeding
,”
Gut
,
35
(
5
), pp.
625
630
.
24.
Seidl
,
H.
,
Gundling
,
F.
,
Pehl
,
C.
,
Pfeiffer
,
A.
,
Achepp
,
W.
, and
Schmidt
,
T.
, 2009, “
Small Bowel Motility in Functional Chronic Constipation
,”
Neurogastroenterol. Motil.
,
21
(
12
), pp.
1278
e122
.
25.
Herlinger
,
H.
,
Maglinte
,
D. D. T.
,
Birnbaum
,
B. A.
, and
Balthazar
,
E. J.
, 2001,
Clinical Imaging of the Small Intestine
,
Springer
,
New York
.
26.
Dario
,
P.
,
Ciarletta
,
P.
,
Menciassi
,
A.
, and
Kim
,
B.
, 2004, “
Modeling and Experimental Validation of the Locomotion of Endoscopic Robots in the Colon
,”
Int. J. Robot. Res.
,
23
(
4-5
), pp.
549
556
.
27.
Dodou
,
D.
,
Bedaux
,
F.
,
van Heffen
,
R.
,
Breedveld
,
P.
, and
Wieringa
,
P. A.
, 2006, “
Grip to the Colon by Means of Macroscopic Adhesion-Controlled Friction
,”
J. Adhes.
,
82
(
6
), p.
577
592
.
28.
Kim
,
J.-S.
,
Sung
,
I.-H.
,
Kim
,
Y.-T.
,
Kwon
,
E.-Y.
,
Kim
,
D.-E.
, and
Jang
,
Y.
, 2006, “
Experimental Investigation of Frictional and Viscoelastic Properties of Intestine for Microendoscope Application
,”
Tribol. Lett.
,
22
(
2
), pp.
143
149
.
29.
Baek
,
N.-K.
,
Sung
,
I.-H.
, and
Kim
,
D.-E.
, 2004, “
Frictional Resistance Characteristics of a Capsule Inside the Intestine for Microendoscope Design
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
218
(
3
), pp.
193
201
.
30.
Grashow
,
J.
, 2005, “
Evaluation of the Biaxial Mechanical Properties of the Mitral Valve Anterior Leaflet Under Physiological Loading Conditions
,” M.S. thesis, University of Pittsburgh, Pittsburgh, PA.
31.
Sacks
,
M.
, 1999, “
A Method for Planar Biaxial Mechanical Testing That Includes In-Plane Shear
,”
ASME J. Biomech. Eng.
,
121
(
5
), pp.
551
555
.
32.
Hoffman
,
A.
, and
Grigg
,
P.
, 1984, “
A Method for Measuring Strains in Soft Tissue
,”
J. Biomech.
,
17
(
10
), pp.
795
800
.
33.
Nielsen
,
P. M. F.
,
Hunter
,
P. J.
, and
Smaill
,
B. H.
, 1991, “
Biaxial Testing of Membrane Biomaterials: Testing Equipment and Procedures
,”
J. Biomech. Eng.
,
113
(
3
), pp.
295
300
.
34.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,”
J. Biomech. Eng.
,
122
(
1
), pp.
23
30
.
35.
Stella
,
J. A.
,
Liao
,
J.
, and
Sacks
,
M. S.
, 2007, “
Time-Dependent Biaxial Mechanical Behavior of the Aortic Heart Valve Leaflet
,”
J. Biomech.
,
40
(
14
), pp.
3169
3177
.
36.
Sacks
,
M.
, and
Sun
,
W.
, 2003, “
Multiaxial Mechanical Behavior of Biological Materials
,”
Annu. Rev. Biomed. Eng.
,
5
, pp.
251
284
.
37.
Gilbert
,
T. W.
,
Sacks
,
M. S.
,
Grashow
,
J. S.
,
Woo
,
S. L. -Y. L.-Y.
,
Badylak
,
S. F.
, and
Chancellor
,
M. B.
, 2006, “
Fiber Kinematics of Small Intestinal Submucosa Under Biaxial and Uniaxial Stretch
,”
J. Biomech. Eng.
,
128
(
6
), pp.
890
898
.
38.
Miftahof
,
R.
, and
Akhmadeev
,
N.
, 2007, “
Dynamics of Intestinal Propulsion
,”
J. Theor. Biol.
,
246
(
2
), pp.
377
393
.
39.
Miftahof
,
R.
, and
Fedotov
,
E.
, 2005, “
Intestinal Propulsion of a Solid Non-Deformable Bolus
,”
J. Theor. Biol.
,
235
(
1
), pp.
57
70
.
You do not currently have access to this content.