The vibration characteristics of shell structures such as eyes have been shown to vary with intraocular pressure (IOP). Therefore, vibration characteristics of the eye have the potential to provide improved correlation to IOP over traditional IOP measurements. As background to examine an improved IOP correlation, this paper develops a finite element model of an eye subject to vibration. The eye is modeled as a shell structure filled with inviscid pressurized fluid in which there is no mean flow. This model solves a problem of a fluid with coupled structural interactions of a generally spherically shaped shell system. The model is verified by comparing its vibrational characteristics with an experimental modal analysis of an elastic spherical shell filled with water. The structural dynamic effects due to change in pressure of the fluid are examined. It is shown that the frequency response of this fluid-solid coupled system has a clear increase in natural frequency as the fluid pressure rises. The fluid and structure interaction is important for accurate prediction of system dynamics. This model is then extended to improve its accuracy in modeling the eye by including the effect of the lens to study corneal vibration. The effect of biomechanical parameters such as the thicknesses of different parts of the eye and eye dimensions in altering measured natural frequencies is investigated and compared to the influence of biomechanical parameters in Goldmann applanation tonometry models. The dynamic response of the eye is found to be less sensitive to biomechanical parameters than the applanation tonometry model.

References

References
1.
Farshidi
,
R.
,
Trieu
,
D.
,
Park
,
S. S.
,
Freiheit
,
T.
, 2010,
“Non-contact experimental modal analysis using air excitation and a microphone array,”
Measurement
,
43
(6)
, pp.
755
765
.
2.
Elsheikh
,
A.
,
Alhasso
,
D.
,
Kotecha
,
A.
, and
Garway-Heath
,
D.
, 2009,
“Assessment of the Ocular Response Analyzer as a Tool for Intraocular Pressure Measurement,”
J. Biomech. Eng.-Trans. ASME
,
131
(
8
), p.
081008
.
3.
Kwona
,
T. H.
,
Ghaboussib
,
J.
,
Pecknoldb
,
D. A.
, and
Hashashb
,
Y. M. A.
, 2008,
“Effect of Cornea Material Stiffness on Measured Intraocular Pressure,”
J. Biomech.
,
41
, pp.
1707
1713
.
4.
Goldmann
,
H.
, and
Schmidt
,
T. H.
, 1957,
“Uber Applanations Tonometrie,”
Opthalmologica
,
134
, pp.
221
242
.
5.
Woo
,
S. Y.
,
Kobayashi
,
A. S.
,
Schlegel
,
W. A.
, and
Lawrence
,
C.
, 1972,
“Mathematical Model of the Corneo-Scleral Shell as Applied to Intraocular Pressure Volume Relations and Applanation Tonometry,”
Ann. Biomed. Eng.
,
14
, pp.
87
98
.
6.
Kobayashi
,
A. S.
, and
Woo
,
S. L.
, 1971,
“Analysis of the Corneo-Scleral shell by the Method of Direct Stiffness,”
J. Biomech.
,
4
, pp.
323
330
.
7.
Asrani
,
S.
,
Zeimer
,
R.
,
Wilensky
,
J.
,
Gieser
,
D.
,
Vitale
,
S.
, and
Lindenmuth
,
K.
, 2000,
“Large Diurnal Fluctuations in Intraocular Pressure are in Independent Risk Factor in Patients with Glaucoma,”
J. Glaucoma
,
9
(
2
), pp.
134
142
.
8.
Von Freyberg
,
A.
,
Sorg
,
M.
,
Fuhrmann
,
M.
,
Kreiner
,
C. F.
,
Pfannkuche
,
J.
,
Klink
,
T.
,
Hensler
,
D.
,
Grehn
,
F.
, and
Goch
,
G.
, 2009,
“Acoustic Tonometry Feasibility Study of a New Principle of Intraocular Pressure Measurement,”
J. Glaucoma
,
18
, pp.
316
320
.
9.
Alam
,
S. K.
,
Richards
,
D. W.
, and
Parker
,
K. J.
, 1994,
“Detection of Intraocular Pressure Change in the Eye using Sonoelastic Doppler Ultrasound,”
J. Ultrasound Med. Biol.
,
20
, pp.
751
758
.
10.
Dubois
,
P.
,
Zemmouri
,
J.
,
Rouland
,
J. F.
,
Elena
,
P. P.
,
Lopes
,
R.
, and
Puech
,
P.
, 2007,
“A New Method for Intra Ocular Pressure in-vivo Measurement: First Clinical Trials,”
29th Annual International Conference of the IEEE EMBS
, pp.
5762
5765
.
11.
Coquart
,
L.
,
Depeursinge
,
C.
,
Curnier
,
A.
, and
Ohayon
,
R.
, 1992,
“A Fluid-Structure Interaction Problem in Biomechanics: Prestressed Vibration of the Eye by the Finite Element,”
J. Biomech.
,
25
(
10
), pp.
1105
1118
.
12.
Zhang
,
Y. L.
,
Gorman
,
D. G.
, and
Reese
,
J. M.
, 2003,
“Vibration of Prestressed Thin Cylindrical Shells Conveying Fluid,”
Thin-Walled Struct.
,
41
(
12
), pp.
1103
1127
.
13.
Lee
,
C. J. K.
,
Noguchi
,
H.
and
Koshizuka
,
S.
, 2007,
“Fluid-Shell Structure Interaction Analysis by Coupled Particle and Finite Element Method,”
Comput. Struct.
,
85
(
11–14
), pp.
688
697
.
14.
Kraus
,
H.
, 1967,
Thin Elastic Shells
,
Wiley
,
New York
.
15.
Soedel
,
W.
, 2004,
Vibrations of Shells and Plates
,
3rd ed.
,
Marcel Dekker
,
New York
.
16.
Alm
,
A.
, and
Nilsson
,
S. F. E.
, 2009,
“Uveoscleral Outflow - A Review,”
Exp. Eye Res.
,
88
(
4
), pp.
760
768
.
17.
Ashish
,
S.
,
Mishra
,
B. K.
, and
Jain
,
S. C.
, 2008,
“Effect of Enclosed Fluid on the Dynamic Response of Inflated Torus,”
J. Sound Vib.
,
309
, pp.
320
329
.
18.
Tongue
,
H. B.
, 1996,
Principles of Vibration
,
Oxford University Press
,
New York
.
19.
Nyquist
,
G. W.
, 1968,
“Rheology of Cornea - Experimental Techniques and Results,”
Exp. Eye Res.
,
7
(
2
), pp.
183
–&.
20.
Pierscionek
,
K.
,
Asejczyk-Widlicka
,
M.
, and
Schachar
,
R. A.
, 2007,
“The Effect of Changing Intraocular Pressure on the Corneal and Scleral Curvatures in the Fresh Porcine Eye,”
Br. J. Ophthamol.
,
91
(
6
), pp.
801
803
.
21.
Salimi
,
S.
,
Freiheit
,
T.
,
Park
,
S. S.
, and
Farshidi
,
R.
, 2009,
“Influence of Biomechanical Properties on Intraocular Pressure,”
Proceedings of the 22nd Canadian Congress of Applied Mechanics
,
Halifax, Nova Scotia
, May 31–June 4, pp.
232
234
.
22.
Fisher
,
R. F.
, and
Pettet
,
B. E.
, 1972,
“Postnatal Growth of Capsule of Human Crystalline Lens,”
J. Anat.
,
112
(Jul), pp.
207
–&.
23.
Powell
,
T. A.
,
Amini
,
R.
,
Oltean
,
A.
,
Barnett
,
V. A.
,
Dorfman
,
K. D.
,
Segal
,
Y.
, and
Barocas
,
V. H.
, 2010,
“Elasticity of the Porcine Lens Capsule as Measured by Osmotic Swelling,”
J. Biomech. Eng.-Trans. ASME
,
132
(
9
), pp.
091008
24.
Rayleigh
,
J. W. S.
, 1984,
The Theory of Sound
,
Dover
,
New York, NY, United States.
25.
Ehlers
,
N.
,
Bramsen
,
T.
, and
Sperling
,
S.
, 1975,
“Applanation Tonometry and Central Corneal Thickness,”
Acta Ophthalmol.
,
53
, pp.
34
43
.
26.
Orssengo
,
G. J.
, and
Pye
,
D. C.
, 1999,
“Determination of the True Intraocular Pressure and Modulus of Elasticity of the Human Cornea In Vivo,”
Bull. Math. Biol.
,
61
(
3
), pp.
551
572
.
27.
Elsheikh
,
A.
,
Alhasso
,
D.
, and
Pye
,
D.
, 2009,
“Goldmann Tonometry Correction Factors Based on Numerical Analysis,”
J. Biomech. Eng.-Trans. ASME
,
131
(
11
), pp.
111013
.
28.
Mee
,
R.
, 2004,
“Efficient Two-Level Designs for Estimating All Main Effects and Two-Factor Interactions,”
J. Quality Technol.
,
36
(
4
), pp.
400
412
.
29.
Schutte
,
S.
,
van den Bedem
,
S. P. W.
,
van Keulen
,
F.
,
van der Heim
,
F. C. T.
, and
Simonsz
,
H. J.
, 2006,
“A Finite-Element Analysis Model of Orbital Biomechanics,”
Vision Res.
,
46
(
11
), pp.
1724
1731
.
You do not currently have access to this content.