Treatments for coarctation of the aorta (CoA) can alleviate blood pressure (BP) gradients (Δ), but long-term morbidity still exists that can be explained by altered indices of hemodynamics and biomechanics. We introduce a technique to increase our understanding of these indices for CoA under resting and nonresting conditions, quantify their contribution to morbidity, and evaluate treatment options. Patient-specific computational fluid dynamics (CFD) models were created from imaging and BP data for one normal and four CoA patients (moderate native CoA: Δ12 mmHg, severe native CoA: Δ25 mmHg and postoperative end-to-end and end-to-side patients: Δ0 mmHg). Simulations incorporated vessel deformation, downstream vascular resistance and compliance. Indices including cyclic strain, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were quantified. Simulations replicated resting BP and blood flow data. BP during simulated exercise for the normal patient matched reported values. Greatest exercise-induced increases in systolic BP and mean and peak ΔBP occurred for the moderate native CoA patient (SBP: 115 to 154 mmHg; mean and peak ΔBP: 31 and 73 mmHg). Cyclic strain was elevated proximal to the coarctation for native CoA patients, but reduced throughout the aorta after treatment. A greater percentage of vessels was exposed to subnormal TAWSS or elevated OSI for CoA patients. Local patterns of these indices reported to correlate with atherosclerosis in normal patients were accentuated by CoA. These results apply CFD to a range of CoA patients for the first time and provide the foundation for future progress in this area.

References

References
1.
O’Rourke
,
M. F.
, and
Cartmill
,
T. B.
, 1971,
“Influence of Aortic Coarctation on Pulsatle Hemodynamics in the Proximal Aorta,”
Circulation
,
44
(
2
), pp.
281
292
.
2.
Rosenthal
,
E.
, 2001,
“Stent Implantation for Aortic Coarctation: The Treatment of Choice in Adults?,”
J. Am. Colloid Cardiol.
,
38
(
5
), pp.
1524
1527
.
3.
Ong
,
C. M.
,
Canter
,
C. E.
Gutierrez
,
F. R.
Sekarski
,
D. R.
, and
Goldring
,
D. R.
, 1992,
“Increased Stiffness and Persistent Narrowing of the Aorta after Successful Repair of Coarctation of the Aorta: Relationship to Left Ventricular Mass and Blood Pressure at Rest and with Exercise,”
Am. Heart J.
,
123
(
6
), pp.
1594
1600
.
4.
Pizarro
,
C.
, and
De Leval
,
M. R.
, 1998,
“Surgical Variations and Flow Dynamics in Cavopulmonary Connections: A Historical Review,”
Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu.
,
1
, pp.
53
60
.
5.
Draney
,
M. T.
,
Alley
,
M. A.
,
Tang
,
B. T.
,
Wilson
,
N. M.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
, 2002,
“Importance of 3D Nonlinear Gradient Corrections for Quantitative Analysis of 3D Mr Angiographic Data,”
Conference Proceedings of the International Society for Magnetic Resonance in Medicine
,
Honolulu, HI.
6.
Wilson
,
N.
,
Wang
,
K.
,
Dutton
,
R.
, and
Taylor
,
C. A.
, 2001,
“A Software Framework for Creating Patient Specific Geometric Models from Medical Imaging Data for Simulation Based Medical Planning of Vascular Surgery,”
Lect. Notes Comput. Sci.
,
2208
, pp.
449
456
.
7.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
, 2010,
“Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.
8.
Tang
,
B. T.
,
Cheng
,
C. P.
,
Draney
,
M. T.
,
Wilson
,
N. M.
,
Tsao
,
P. S.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
, 2006,
“Abdominal Aortic Hemodynamics in Young Healthy Adults at Rest and During Lower Limb Exercise: Quantification Using Image-Based Computer Modeling,” Am, J, Physiol, Heart, Circ
,
Physiol
,
291
(
2
), pp.
H668
H676
.
9.
Cheng
,
C. P.
,
Herfkens
,
R. J.
,
Lightner
,
A. L.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
, 2004,
“Blood Flow Conditions in the Proximal Pulmonary Arteries and Vena Cavae in Healthy Children During Upright Seated Rest and Cycling Exercise, Quantified with MRI,”
Am. J. Physiol. Heart. Circ. Physiol.
,
287
(
2
), pp.
H921
H926
.
10.
Zamir
,
M.
,
Sinclair
,
P.
, and
Wonnacott
,
T. H.
, 1992,
“Relation between Diameter and Flow in Major Branches of the Arch of the Aorta,”
J. Biomech.
,
25
(
11
), pp.
1303
1310
.
11.
Seear
,
M.
,
Webber
,
S.
, and
Leblanc
,
J.
, 1994,
“Descending Aortic Blood Flow Velocity as a Noninvasive Measure of Cardiac Output in Children,”
Pediatr. Cardiol.
,
15
(
4
), pp.
178
183
.
12.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006,
“Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
3776
3796
.
13.
Laskey
,
W. K.
,
Parker
,
H. G.
,
Ferrari
,
V. A.
,
Kussmaul
,
W. G.
, and
Noordergraaf
,
A.
, 1990,
“Estimation of Total Systemic Arterial Compliance in Humans,”
J. Appl. Physiol.
,
69
(
1
), pp.
112
119
.
14.
Stergiopulos
,
N.
,
Young
,
D. F.
, and
Rogge
,
T. R.
, 1992,
“Computer Simulation of Arterial Flow with Applications to Arterial and Aortic Stenoses,”
J. Biomech.
,
25
(
12
), pp.
1477
1488
.
15.
O’Rourke
,
M. F.
, and
Safar
,
M. E.
, 2005,
“Relationship between Aortic Stiffening and Microvascular Disease in Brain and Kidney: Cause and Logic of Therapy,”
Hypertension
,
46
(
1
), pp.
200
204
.
16.
Stergiopulos
,
N.
,
Segers
,
P.
, and
Westerhof
,
N.
, 1999,
“Use of Pulse Pressure Method for Estimating Total Arterial Compliance in Vivo,”
Am. J. Physiol. Heart. Circ. Physiol.
,
276
(
45
), pp.
H424
H428
.
17.
Naka
,
K. K.
,
Tweddel
,
A. C.
,
Parthimos
,
D.
,
Henderson
,
A.
,
Goodfellow
,
J.
, and
Frenneaux
,
M. P.
, 2003,
“Arterial Distensibility: Acute Changes Following Dynamic Exercise in Normal Subjects,”
Am. J. Physiol. Heart. Circ. Physiol.
,
284
(
3
), pp.
H970
H978
.
18.
Calbet
,
J. A.
,
Gonzalez-Alonso
,
J.
,
Helge
,
J. W.
,
Sondergaard
,
H.
,
Munch-Andersen
,
T.
,
Boushel
,
R.
, and
Saltin
,
B.
, 2007,
“Cardiac Output and Leg and Arm Blood Flow During Incremental Exercise to Exhaustion on the Cycle Ergometer,”
J. Appl. Physiol.
,
103
(
3
), pp.
969
978
.
19.
Markham
,
L. W.
,
Knecht
,
S. K.
,
Daniels
,
S. R.
,
Mays
,
W. A.
,
Khoury
,
P. R.
, and
Knilans
,
T. K.
, 2004,
“Development of Exercise-Induced Arm-Leg Blood Pressure Gradient and Abnormal Arterial Compliance in Patients with Repaired Coarctation of the Aorta,”
Am. J. Cardiol.
,
94
(
9
), pp.
1200
1202
.
20.
Hellstrom
,
G.
,
Fischer-Colbrie
,
W.
,
Wahlgren
,
N. G.
, and
Jogestrand
,
T.
, 1996,
“Carotid Artery Blood Flow and Middle Cerebral Artery Blood Flow Velocity during Physical Exercise,”
J. Appl. Physiol.
,
81
(
1
), pp.
413
418
.
21.
Green
,
D.
,
Cheetham
,
C.
,
Reed
,
C.
,
Dembo
,
L.
, and
O’Driscoll
,
G.
, 2002,
“Assessment of Brachial Artery Blood Flow across the Cardiac Cycle: Retrograde Flows during Cycle Ergometry,”
J. Appl. Physiol.
,
93
(
1
), pp.
361
368
.
22.
Kim
,
H. J.
,
Figueroa
,
C. A.
,
Hughes
,
T. J. R.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2009,
“Augmented Lagrangian Method for Constraining the Shape of Velocity Profiles at Outlet Boundaries for Three-Dimensional Finite Element Simulations of Blood Flow,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
3551
3566
.
23.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
, 2006,
“A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
5685
5706
.
24.
Figueroa
,
C. A.
,
Ladisa
,
J. F.
, Jr.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. C.
,
Hughes
,
T. J. R.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
, 2005,
“A Coupled-Momentum Method for Fluid-Structure Interaction: Applications to Aortic Co-arctation,”
Second International Conference on Computational Bioengineering
,
Lisbon, Portugal
.
25.
Westerhof
,
N.
,
Bosman
,
F.
,
De Vries
,
C. J.
, and
Noordergraaf
,
A.
, 1969,
“Analog Studies of the Human Systemic Arterial Tree,”
J. Biomech.
,
2
(
2
), pp.
121
143
.
26.
Moireau
,
P.
,
Xiao
,
N.
,
Astorino
,
M.
,
Figueroa
,
C. A.
,
Chapelle
,
D.
,
Taylor
,
C. A.
, and
Gerbeau
,
J. F.
, 2011,
“External Tissue Support and Fluid-Structure Simulation in Blood Flows,”
Biomech. Model. Mechanobiol.
(in press).
27.
Sahni
,
O.
,
Muller
,
J.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
, 2006,
“Efficient Anisotropic Adaptive Discretization of the Cardiovascular System,”
Comput. Methods Biomech. Biomed. Eng.
,
195
, pp.
5634
5655
.
28.
Muller
,
J.
,
Sahni
,
O.
,
Li
,
X.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
, 2005,
“Anisotropic Adaptive Finite Element Method for Modelling Blood Flow,”
Comput. Methods Biomech. Biomed. Engin.
,
8
(
5
), pp.
295
305
.
29.
Frydrychowicz
,
A.
,
Stalder
,
A. F.
,
Russe
,
M. F.
,
Bock
,
J.
,
Bauer
,
S.
,
Harloff
,
A.
,
Berger
,
A.
,
Langer
,
M.
,
Hennig
,
J.
, and
Markl
,
M.
, 2009,
“Three-Dimensional Analysis of Segmental Wall Shear Stress in the Aorta by Flow-Sensitive Four-Dimensional-MRI,”
J. Magn. Reson. Imaging
,
30
(
1
), pp.
77
84
.
30.
Morrison
,
T. M.
,
Choi
,
G.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
, 2009,
“Circumferential and Longitudinal Cyclic Strain of the Human Thoracic Aorta: Age-Related Changes,”
J. Vasc. Surg.
,
49
(
4
), pp.
1029
1036
.
31.
Markl
,
M.
,
Draney
,
M. T.
,
Hope
,
M. D.
,
Levin
,
J. M.
,
Chan
,
F. P.
,
Alley
,
M. T.
,
Pelc
,
N. J.
, and
Herfkens
,
R. J.
, 2004,
“Time-Resolved 3-Dimensional Velocity Mapping in the Thoracic Aorta: Visualization of 3-Directional Blood Flow Patterns in Healthy Volunteers and Patients,”
J. Comput. Assist. Tomog.
,
28
(
4
), pp.
459
468
.
32.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Longmore
,
D. B.
, 1993,
“Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three-Directional Magnetic Resonance Velocity Mapping,” Circulation
, 88(5 Pt
1
), pp.
2235
2247
.
33.
Sigurdardottir
,
L. Y.
, and
Helgason
,
H.
, 1996,
“Exercise-Induced Hypertension after Corrective Surgery for Coarctation of the Aorta,”
Pediatr. Cardiol.
,
17
(
5
), pp.
301
307
.
34.
Wentzel
,
J. J.
,
Corti
,
R.
,
Fayad
,
Z. A.
,
Wisdom
,
P.
,
Macaluso
,
F.
,
Winkelman
,
M. O.
,
Fuster
,
V.
, and
Badimon
,
J. J.
, 2005,
“Does Shear Stress Modulate Both Plaque Progression and Regression in the Thoracic Aorta? Human Study Using Serial Magnetic Resonance Imaging,”
J. Am. Coll. Cardiol.
,
45
(
6
), pp.
846
854
.
35.
LaDisa
,
J. F.
, Jr.
,
Dholakia
,
R. J.
,
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Chan
,
F. P.
,
Samyn
,
M. M.
,
Cava
,
J. R.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
, 2011,
“Computational Simulations Demonstrate Altered Wall Shear Stress in Aortic Coarctation Patients Previously Treated by Resection with End-to-End Anastomosis,”
Congen. Heart Dis.
36.
Vriend
,
J. W.
,
De Groot
,
E.
Bouma
,
B. J.
Hrudova
,
J.
Kastelein
,
J. J.
Tijssen
,
J. G.
and
Mulder
,
B. J.
, 2005,
“Carotid Intima-Media Thickness in Post-Coarctectomy Patients with Exercise Induced Hypertension,”
Heart
,
91
(
7
), pp.
962
963
.
37.
Carallo
,
C.
,
Lucca
,
L. F.
,
Ciamei
,
M.
,
Tucci
,
S.
, and
De Franceschi
,
M. S.
, 2006,
“Wall Shear Stress Is Lower in the Carotid Artery Responsible for a Unilateral Ischemic Stroke,”
Atherosclerosis
,
185
(
1
), pp.
108
113
.
38.
Taylor
,
C. A.
,
Draney
,
M. T.
,
Ku
,
J. P.
,
Parker
,
D.
,
Steele
,
B. N.
,
Wang
,
K.
, and
Zarins
,
C. K.
, 1999,
“Predictive Medicine: Computational Techniques in Therapeutic Decision-Making,”
Comput. Aided Surg.
,
4
(
5
), pp.
231
247
.
39.
Jin
,
S.
,
Oshinski
,
J.
, and
Giddens
,
D. P.
, 2003,
“Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta,”
J. Biomech. Eng.
,
125
(
3
), pp.
347
354
.
40.
O’Rourke
,
M. F.
, and
Taylor
,
M. G.
, 1967,
“Input Impedance of the Systemic Circulation,”
Circ. Res.
,
20
(
4
), pp.
365
380
.
41.
Wolinsky
,
H.
, and
Glagov
,
S.
, 1969,
“Comparison of Abdominal and Thoracic Aortic Medial Structure in Mammals. Deviation of Man from the Usual Pattern,”
Circ. Res.
,
25
(
6
), pp.
677
686
.
42.
Patel
,
D. J.
, and
Fry
,
D. L.
, 1966,
“Longitudinal Tethering of Arteries in Dogs,”
Circ. Res.
,
19
(
6
), pp.
1011
1021
.
43.
Holzapfel
,
G. A.
, and
Weizsacker
,
H. W.
, 1998,
“Biomechanical Behavior of the Arterial Wall and Its Numerical Characterization,”
Comput. Biol. Med.
,
28
(
4
), pp.
377
392
.
44.
Steffens
,
J. C.
,
Bourne
,
M. W.
,
Sakuma
,
H.
,
O’Sullivan
,
M.
, and
Higgins
,
C. B.
, 1994,
“Quantification of Collateral Blood Flow in Coarctation of the Aorta by Velocity Encoded Cine Magnetic Resonance Imaging,”
Circulation
,
90
(
2
), pp.
937
943
.
45.
Riehle
,
T. J.
,
Oshinski
,
J. N.
,
Brummer
,
M. E.
,
Favaloro-Sabatier
,
J.
,
Mahle
,
W. T.
,
Fyfe
,
D. A.
,
Kanter
,
K. R.
, and
Parks
,
W. J.
, 2006,
“Velocity-Encoded Magnetic Resonance Image Assessment of Regional Aortic Flow in Coarctation Patients,”
Ann. Thorac. Surg.
,
81
(
3
), pp.
1002
1007
.
46.
Engvall
,
J.
,
Karlsson
,
M.
,
Ask
,
P.
,
Loyd
,
D.
,
Nylander
,
E.
, and
Wranne
,
B.
, 1994,
“Importance of Collateral Vessels in Aortic Coarctation: Computer Simulation at Rest and Exercise Using Transmission Line Elements,”
Med. Biol. Eng. Comput.
,
32
(
4
), pp.
S115
S122
.
47.
Steinman
,
D. A.
, and
Taylor
,
C. A.
, 2005,
“Flow Imaging and Computing: Large Artery Hemodynamics,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1704
1709
.
You do not currently have access to this content.