The material properties of passive skeletal muscle are critical to proper function and are frequently a target for therapeutic and interventional strategies. Investigations into the passive viscoelasticity of muscle have primarily focused on characterizing the elastic behavior, largely neglecting the viscous component. However, viscosity is a sizeable contributor to muscle stress and extensibility during passive stretch and thus there is a need for characterization of the viscous as well as the elastic components of muscle viscoelasticity. Single mouse muscle fibers were subjected to incremental stress relaxation tests to characterize the dependence of passive muscle stress on time, strain and strain rate. A model was then developed to describe fiber viscoelasticity incorporating the observed nonlinearities. The results of this model were compared with two commonly used linear viscoelastic models in their ability to represent fiber stress relaxation and strain rate sensitivity. The viscous component of mouse muscle fiber stress was not linear as is typically assumed, but rather a more complex function of time, strain and strain rate. The model developed here, which incorporates these nonlinearities, was better able to represent the stress relaxation behavior of fibers under the conditions tested than commonly used models with linear viscosity. It presents a new tool to investigate the changes in muscle viscous stresses with age, injury and disuse.

References

References
1.
Foidart
,
M.
,
Foidart
J. M.
, and
Engel
,
W. K.
, 1981,
“Collagen Localization in Normal and Fibrotic Human Skeletal Muscle,”
Arch Neurol.
,
38
, pp.
152
157
.
2.
Gao
,
Y.
,
Kostrominova
,
T. Y.
,
Faulkner
,
J. A.
, and
Wineman
,
A. S.
, 2008,
“Age-Related Changes in the Mechanical Properties of the Epimysium in Skeletal Muscles of Rats,”
J. Biomech.
,
41
, pp.
465
469
.
3.
Smith
,
L. R.
,
Lee
,
K. S.
,
Ward
,
S. R.
,
Chambers
,
H. G.
, and
Lieber
,
R. L.
, 2011b,
“Hamstring Contractures in Children With Spastic Cerebral Palsy Result from a Stiffer Extracellular Matrix and Increased In Vivo Sarcomere Length,”
J. Physio
.,
589
, pp.
2625
2639
.
4.
Gajdosik
,
R. L.
, 2001,
“Passive Extensibility of Skeletal Muscle: Review of the Literature With Clinical Implications,”
Clin. Biomech. (Bristol, Avon)
,
16
, pp.
87
101
.
5.
Levin
,
A. W. J.
, 1927,
“The Viscous Elastic Properties of Muscle,”
Proc. R. Soc., London, Ser. B
,
101
, pp.
218
243
.
6.
Hill
,
A. V.
, 1938,
“The Heat of Shortening and the Dynamic Constants of Muscle,”
Proc. R. Soc., London, Ser. B
,
126
, pp.
136
195
.
7.
Buchthal
,
F.
,
Kaiser
,
E.
, and
Rosenfalk
,
P.
, 1951,
“The Rheology of the Cross-Striated Muscle Fiber With Particular Reference to Isotonic Conditions,”
Dan. Biol. Med.
,
21,
pp.
1
302
.
8.
Glantz
,
S. A.
, 1977,
“A Three-Element Description for Muscle With ViscoElastic Passive Elements,”
J. Biomech.
,
10
, pp.
5
20
.
9.
Best
,
T. M.
,
McElhaney
,
J.
,
Garrett
,
W. E.
Jr.
, and
Myers
,
B. S.
, 1994,
“Characterization of the Passive Responses of Live Skeletal Muscle Using the Quasi-Linear Theory of Viscoelasticity,”
J. Biomech
.,
27
, pp.
413
419
.
10.
Thornton
,
G. M.
,
Oliynyk
,
A.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
, 1997,
“Ligament Creep Cannot Be Predicted from Stress Relaxation at Low Stress: A Biomechanical Study of the Rabbit Medial Collateral Ligament,”
J. Orthop. Res.
,
15
, pp.
652
656
.
11.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
Jr.
, 2001,
“Nonlinear Ligament Viscoelasticity,”
Ann. Biomed. Eng.
,
29
, pp.
908
914.
12.
Bagni
,
M. A.
,
Cecchi
,
G.
,
Colombini
,
B.
, and
Colomo
,
F.
, 1999,
“Mechanical Properties of Frog Muscle Fibres at Rest and During Twitch Contraction,”
J. Electromyogr Kinesiol.
,
9
, pp.
77
86
.
13.
Van Loocke
,
M.
,
Lyons
,
C. G.
, and
Simms
,
C. K.
, 2008,
“Viscoelastic Properties of Passive Skeletal Muscle in Compression: Stress-Relaxation Behaviour and Constitutive Modelling,”
J. Biomech.
,
41
, pp.
1555
1566
.
14.
Quaia
,
C.
,
Ying
,
H. S.
, and
Optican
,
L. M.
, 2009b,
“The Viscoelastic Properties of Passive Eye Muscle in Primates II: Testing the Quasi-Linear Theory,”
PloS one
,
4
,
e6480.
15.
Anderson
,
J.
,
Li
,
Z.
, and
Goubel
,
F.
, 2002,
“Models of Skeletal Muscle to Explain the Increase in Passive Stiffness in Desmin Knockout Muscle,”
J. Biomech.
,
35
, pp.
1315
1324.
16.
Wolff
,
A. V.
,
Niday
,
A. K.
,
Voelker
,
K. A
,
Call
,
J. A.
,
Evans
,
N. P.
,
Granata
,
K. P.
, and
Grange
,
R. W.
, 2006,
“Passive Mechanical Properties of Maturing Extensor Digitorum Longus are not Affected by Lack of Dystrophin,”
Muscle Nerve
,
34
, pp.
304
312.
17.
Navajas
,
D.
,
Mijailovich
,
S.
,
Glass
,
G. M.
,
Stamenovic
,
D.
, and
Fredberg
,
J. J.
, 1992,
“Dynamic Response of the Isolated Passive Rat Diaphragm Strip,”
J. Appl. Physiol.
,
73
, pp.
2681
2692.
18.
Blemker
,
S. S.
, and
Delp
,
S. L.
, 2005,
“Three-Dimensional Representation of Complex Muscle Architectures and Geometries,”
Ann. Biomed. Eng.
,
33
, pp.
661
673
.
19.
Odegard
,
G. M.
,
Donahue
,
T. L.
,
Morrow
,
D. A.
, and
Kaufman
K. R.
, 2008,
“Constitutive Modeling of Skeletal Muscle Tissue With an Explicit Strain-Energy Function,”
J. Biomech. Eng.
,
130
, p.
061017
.
20.
Lu
,
Y. T.
,
Zhu
,
H. X.
,
Richmond
,
S.
, and
Middleton
,
J.
, 2010,
“A Visco-Hyperelastic Model for Skeletal Muscle Tissue Under High Strain Rates,”
J. Biomech.
,
43
, pp.
2629
2632
.
21.
Shah
,
S. B.
,
Davis
,
J.
,
Weisleder
,
N.
,
Kostavassili
,
I.
,
McCulloch
,
A. D.
,
Ralston
,
E.
,
Capetanaki
,
Y.
, and
Lieber
R. L.
, 2004,
“Structural and Functional Roles of Desmin in Mouse Skeletal Muscle During Passive Deformation,”
Biophys. J.
,
86
, pp.
2993
3008
.
22.
Shah
,
S. B.
, and
Lieber
,
R. L.
, 2003,
“Simultaneous Imaging and Functional Assessment of Cytoskeletal Protein Connections in Passively Loaded Single Muscle Cells,”
J. Histochem. Cytochem.
,
51
, pp.
19
29
.
23.
James
,
R. S.
,
Altringham
,
J. D.
, and
Goldspink
,
D. F.
, 1995,
“The Mechanical Properties of Fast and Slow Skeletal Muscles of the Mouse in Relation to their Locomotory Function,”
J. Exp. Biol.
,
198
, pp.
491
502.
24.
Smith
,
L. R.
,
Gerace-Fowler
,
L.
, and
Lieber
,
R. L.
, 2011a,
“Muscle Extracellular Matrix Applies a Transverse Stress on Fibers With Axial Strain,”
J Biomech.
,
44
, pp.
1618
1620
.
25.
Lakes
,
R. S.
, and
Vanderby
,
R.
, 1999,
“Interrelation of Creep and Relaxation: A Modeling Approach for Ligaments,”
J. Biomech. Eng.
,
121
, pp.
612
615.
26.
Meyer
,
G. A.
, and
Lieber
,
R. L.
, 2011,
“Elucidation of Extracellular Matrix Mechanics from Muscle Fibers and Fiber Bundles,”
J. Biomech.
,
44
, pp.
771
773
.
27.
Sisko
,
A. W.
, 1958,
“The Flow of Lubricating Greases,”
Ind. Eng. Chem.
,
50
, pp.
1789
1792
.
28.
Ranatunga
,
K. W.
, 2001,
“Sarcomeric Visco-Elasticity of Chemically Skinned Skeletal Muscle Fibres of the Rabbit at Rest,”
J. Muscle Res. Cell Motil.
,
22
, pp.
399
414
.
29.
Bensamoun
,
S.
,
Stevens
,
L.
,
Fleury
,
M. J.
,
Bellon
,
G.
,
Goubel
,
F.
, and
Ho Ba Tho
,
M. C.
, 2006,
“Macroscopic-Microscopic Characterization of the Passive Mechanical Properties in Rat Soleus Muscle,”
J. Biomech.
,
39
, pp.
568
578
.
30.
Fung
,
Y. C.
, 2004,
Biomechanics: Mechanical Properties of Living Tissues,
Springer
,
New York.
31.
Doehring
,
T. C.
,
Carew
,
E. O.
, and
Vesely
,
I.
, 2004,
“The Effect of Strain Rate on the Viscoelastic Response of Aortic Valve Tissue: A Direct-Fit Approach,”
Ann. Biomed. Eng.
,
32
, pp.
223
232
.
32.
Nekouzadeh
,
A.
,
Pryse
,
K. M.
,
Elson
E. L.
, and
Genin
,
G. M.
, 2007,
“A Simplified Approach to Quasi-Linear Viscoelastic Modeling,”
J. Biomech.
,
40
, pp.
3070
3078
.
33.
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Corr
,
D. T.
, and
Vanderby
,
R.
Jr.
, 2002,
“Application of Nonlinear Viscoelastic Models to Describe Ligament Behavior,”
Biomech. Model. Mechanobiol.
,
1
, pp.
45
57.
34.
Hill
,
D. K.
, 1968,
“Tension Due to Interaction Between the Sliding Filaments in Resting Striated Muscle: The Effect of Stimulation,”
J. Physiol.
,
199
, pp.
637
684
.
35.
Wiegner
,
A. W.
, 1987,
“Mechanism of Thixotropic Behavior at Relaxed Joints in the Rat,”
J. Appl. Physiol.
,
62
, pp.
1615
1621
.
36.
Lakie
,
M.
, and
Robson
,
L. G.
, 1988,
“Thixotropy: The Effect of Stretch Size in Relaxed Frog Muscle,”
Q. J. Exp. Physiol.
,
73
, pp.
127
129
.
37.
Quaia
,
C.
,
Ying
,
H. S.
, and
Optican
,
L. M.
, 2010,
“The Viscoelastic Properties of Passive Eye Muscle in Primates III: Force Elicited by Natural Elongations,”
PloS One
,
5
,
e9595
.
38.
Moss
,
R. L.
, and
Halpern
,
W.
, 1977,
“Elastic and Viscous Properties of Resting Frog Skeletal Muscle,”
Biophys. J.
,
17
, pp.
213
228
.
39.
Ito
,
D.
,
Tanaka
,
E.
, and
Yamamoto
,
S.
, 2010,
“A Novel Constitutive Model of Skeletal Muscle Taking Into Account Anisotropic Damage,”
J. Mech. Behav. Biomed. Mater.
,
3
, pp.
85
93.
40.
Zhang
,
W.
,
Chen
,
H. Y.
, and
Kassab
,
G. S.
, 2007,
“A Rate-Insensitive Linear Viscoelastic Model for Soft Tissues,”
Biomaterials
,
28
, pp.
3579
3586.
41.
Quaia
,
C.
,
Ying
,
H. S.
,
Nichols
,
A. M.
, and
Optican
,
L. M.
, 2009a,
“The Viscoelastic Properties of Passive Eye Muscle in Primates I: Static Forces and Step Responses,”
PloS One
,
4
,
e4850
.
You do not currently have access to this content.