The study provides a pathway to design a mechanics-matching vascular graft for an end-to-end anastomosis to a host artery. For functional equivalence, we submit that the graft and a host artery should have equal inner deformed diameters, equal pressure-radius module, and experience equal axial forces when subjected to mean arterial pressure. These criteria for mechanical equivalence are valid for a large class of materials that can be considered as elastic incompressible and orthotropic solids. As an example, specific known artery properties were used to design or select a graft made from a new synthetic biomaterial to demonstrate that reliable and robust technology for graft fabrication is possible.

References

References
1.
Thom
,
T.
,
Haase
,
N.
,
Rosamond
,
W.
,
Howard
,
V. J.
,
Rumsfeld
,
J.
,
Manolio
,
T.
,
Zheng
,
Z. J.
,
Flegal
,
K.
,
O’Donnell
,
C.
,
Kittner
,
S.
,
Lloyd-Jones
,
D.
,
Goff
,
D. C.
, Jr.
,
Hong
,
Y.
,
Adams
,
R.
,
Friday
,
G.
,
Furie
,
K.
,
Gorelick
,
P.
,
Kissela
,
B.
,
Marler
,
J.
,
Meigs
,
J.
,
Roger
,
V.
,
Sidney
,
S.
,
Sorlie
,
P.
,
Steinberger
,
J.
,
Wasserthiel-Smoller
,
S.
,
Wilson
,
M.
, and
Wolf
,
P.
, 2006, “
Heart Disease and Stroke Statistics—2006 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
,
113(6)
, pp.
e85
e151
.
2.
Darling
,
R. C.
, and
Linton
,
R. R.
, 1972, “
Durability of Femoropopliteal Reconstructions. Endarterectomy Versus Vein Bypass Graft
,”
Am. J. Surg.
,
123
, pp.
472
479
.
3.
Clayson
,
K. R.
,
Edwards
,
W. H.
,
Allen.
,
T. R.
, and
Dale
,
W. A.
, 1976, “
Arm Veins for Peripheral Arterial Reconstruction
,”
Arch. Surg.
,
11
, pp.
1276
1280
.
4.
Glagov
,
S.
,
Giddens
,
D. P.
,
Bassiouny
,
H.
,
White
,
S.
, and
Zarins
,
C. K.
, 1991,
“Hemodynamic Effects and Tissue Reactions at Grafts to Vein Anastomosis for Vascular Access,”
B. G.
Sommer
and
M. L.
Henry
eds.,
Vascular Access for Hemodynamics-II, Precept Press
,
Chicago
, pp.
37
20
.
5.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1989, “
Change of Residual Strains in Arteries due to Hypertrophy Caused by Aortic Constriction
,”
Circ. Res.
,
65
, pp.
1340
1349
.
6.
Liu
,
S. Q.
, and
Fung
,
Y. C.
, 1989, “
Relationship Between Hypertension, Hypertrophy and Opening Angle of Zero-Stress State of Arteries Following Aortic Constriction
,”
J. Biomech. Eng.
,
111
, pp.
325
335
.
7.
Matsumoto
,
T.
, and
Hayashi
,
K.
, 1994, “
Mechanical and Dimensional Adaptation of Rat Aorta to Hypertension
,”
J. Biomech. Eng.
,
116
, pp.
278
283
.
8.
Vaishnav
,
R. N.
,
Vossough
,
J.
,
Patel
,
D. J.
,
Cothran
,
I. N.
,
Coleman
,
B. R.
, and
Ison-Franklin
,
E. L.
, 1990, “
Effect of Hypertension on Elasticity and Geometry of Aortic Tissue From Dogs
,”
J. Biomech. Eng.
,
112
, pp.
70
74
.
9.
Matsumoto
,
T.
,
Okumura
,
E.
,
Miura
,
Y.
, and
Sato
,
M.
, 1999, “
Mechanical and Dimensional Adaptation on Rabbit Carotid Artery Cultured in Vitro
,”
Med. Biol. Eng. Comput.
,
37
, pp.
252
256
.
10.
Hayashi
,
K.
,
Makino
,
A.
,
Kakoi
,
D.
, and
Miyazaki
,
H.
, 2001,
“Remodeling of Arterial Wall in Response to Blood Pressure and Blood Flow Changes,”
Proceedings of the 2001 Summer Bioengineering Conference
, pp.
819
820
.
11.
Kamiya
,
A.
, and
Togawa
,
T.
, 1980, “
Adaptive Regulation of Wall Shear Stress to Flow Change in Canine Carotid Artery
,”
Am. J. Phys.
,
239
, pp.
14
21
.
12.
Glagov
,
S.
,
Zarnis
,
C. K.
,
Masawa
,
N.
,
Xu
,
C. P.
,
Bassiouny
,
H.
, and
Giddens
,
D. P.
, 1993, “
Mechanical Functional Role of Non-Atherosclerotic Intimal Thickening
,”
Frontiers Med. Biol. Eng.
,
1
,
37
43
.
13.
Langille
,
B. L.
, and
O’Donnell
,
F.
, 1986, “
Reductions in Arterial Diameter Produced by Chronic Decrease in Blood Flow are Endothelium-Dependent
,”
Science
,
231
, pp.
405
407
.
14.
Langille
,
B. L.
, 1993, “
Remodeling of Feveloping and Mature Arteries: Endothelium, Smooth Muscle and Matrix
,”
J. Cardiovasc. Pharmacol.
,
21(Suppl. 1)
, pp.
11
17
.
15.
Langille
,
B. L.
, 1995,
“Blood Flow-Induced Remodeling of the Artery Wall,”
Flow-Dependent Regulation of Vascular Function
,
J. A.
Bevan
,
G.
Kaley
, and
G.
Rubanyi
, eds.,
American Society of Mechanical Engineers
,
New York
, pp.
227
299
.
16.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. R.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Localization and Low and Oscillating Shear Stress
,”
Arteriosclerosis
5
, pp.
293
302
.
17.
He
,
X.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in Human Left Coronary Bifurcation: Average Conditions
,”
J. Biomech. Eng.
,
118
, pp.
74
82
.
18.
Matthew
,
W.
,
Weston
,
M.
,
Rhee
,
K.
, and
Tarbell
,
J.
, 1996, “
Compliance and Diameter Mismatch Affect the Wall Shear Rate Distribution Near an End-to-End Anastomosis
,”
J. Biomech.
,
29
,
187
198
.
19.
Salam
,
T. A.
,
Lumsden
,
A. B.
,
Suggs
,
W. D.
, and
Ku
,
D. N.
, 1996, “
Low Shear Stress Promotes Intimal Hyperplasia Thickening
,”
J. Vasc. Invest.
,
2
,
12
22
.
20.
Paasche
,
P. E.
,
Kinley
,
C. E.
,
Dolan
,
F. G.
Gonaz
,
E. R.
, and
Marble
,
A. E.
, 1973, “
Consideration of Suture Line Stresses in the Selection of Synthetic Grafts for Implantation
,”
J. Biomech.
,
6
, pp.
253
259
.
21.
Abbott
,
W. M.
, and
Bouchier-Hayes
,
D. J.
, 1978,
“The Role of Mechanical [roperties in Graft Design.”
Graft Material Vascular Surgery
,
H.
Dardik
, ed.,
Year Book Medical Publisher
,
Chicago
, pp.
59
78
.
22.
Abbott
,
W. M.
,
Megerman
,
J.
,
Hasson
,
J. E.
,
L’Italien
,
G.
, and
Warnock
,
D. F.
, 1987, “
Effect of Compliance Mismatch on Vascular Graft Patency
,”
J. Vasc. Surg.
,
5
, pp.
376
382
.
23.
Chandran
,
K. B.
,
Gao
,
D.
,
Han
,
G.
,
Baraniewski
,
H.
, and
Corson
,
J. D.
, 1992, “
Finite-Element Analysis of Arterial Anastomoses with Vein, Dacron and PTFE Grafts
,”
Med. Biol. Eng. Comput.
,
30
, pp.
413
418
.
24.
Matsumoto
,
T.
,
Itagaki
,
H.
, and
Hayashi
,
K.
, 1994, “
FEM Analysis of Stress and Deformation in Vicinities of Arterial Graft Anastomosis
,”
J. Appl. Biomater.
,
5
, pp.
79
87
.
25.
Rachev
,
A.
,
Manoach
,
E.
,
Berry
,
J.
, and
Moore
,
J.
, 2000, “
Model of Stress-Induced Geometrical Remodeling of Vessel Segment Adjacent to Stents and Artery/Graft Anastomosis
,”
J. Theor. Biol.
,
206
, pp.
429
443
.
26.
Walden
,
R.
,
L’Italien
,
G. J.
,
Megerman
,
J.
,
Hasson
,
J. E.
, and
Abbott
,
W. M.
, 1980, “
Matched Elastic Properties and Successful Arterial Grafting
,”
Arch. Surg.
,
115
, pp.
1166
1169
.
27.
Salacinski
,
H. J.
,
Goldner
,
S.
,
Giudiceandrea
,
A.
,
Hamilton
,
G.
, and
Seifalian
,
A. M.
, 2001, “
The Mechanical Behavior of Vascular Grafts: A Review
,”
J. Biomater. Applic.
,
15
, pp.
241
277
.
28.
Edwards
,
W. S.
,
Hodefer
,
W. F.
, and
Mohtashemi
,
M.
, 1996, “
The Importance of Proper Caliber of Lumen in Femoral-Popliteal Reconstruction
,”
Surg. Gynecol. Obstet.
,
122
, pp.
1
4
.
29.
Binns
,
R. L.
,
Ku
,
D. N.
,
Stewart
,
M. T.
,
Ansley
,
J. P.
, and
Coyle
,
K. A.
, 1989, “
Optimal Graft Diameter: Effect of Wall Shear Stress on Vascular Healing
,”
J. Vasc. Surg.
,
10
, pp.
365
380
.
30.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
31.
Weizsacker
,
H. W.
, and
Kampp
,
T. D.
, 1990, “
Passive Elastic Properties of Rat Aorta
,”
Biomed. Technik.
,
35
, pp.
224
234
.
32.
Rachev
,
A.
, 2009, “
A Theoretical Study of Mechanical Stability of Arteries
,”
J. Biomech. Eng.
,
131
, pp.
051006
-1– 051006-
10
.
33.
Ku
,
D. N.
, and
Allen
,
R. C.
, 1995,
Vascular Grafts
, in
The Biomedical Engineering Handbook
,
J. D.
,
Bronzino
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
1871
1878
.
34.
Greenwald
,
S. E.
, and
Berry
,
C. L
., 2000, “
Improving Vascular Grafts: The Importance of Mechanical and Haemodynamic Properties
,”
J. Path.
,
190
, pp.
292
299
.
35.
How
,
T. V.
, and
Clarke
,
R. M.
, 1984, “
The Rlastic Properties of a Polyurethane Arterial Prosthesis
,”
J. Biomech.
,
17
, pp.
597
608
.
36.
Stewart
,
S. F.
, and
Lyman
,
D. J.
, 1988, “
Finite Elasticity Modeling of the Biaxial and Uniaxial Properties of Compliant Vascular Grafts
,”
J. Biomech. Eng.
,
110
, pp.
344
348
.
37.
Stewart
,
S. F. C.
, and
Lyman
,
D. J.
, 1987,
“Essential Physical Characteristics of Vascular Grafts,”
P. N.
Sawyer
, ed.,
Modern Vascular Grafts
,
McGraw–Hill
,
New York
, pp.
117
121
.
38.
van Oijen
C. H. G. A.
, 2003,
“Mechanics and Design of Fiber-Reinforced Vascular Prostheses,”
Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
39.
Sonoda
,
H.
,
Takamizawa
,
K.
,
Nakayama
,
Y.
,
Yasui
,
H.
, and
Matsuda
,
T.
, 2001, “
Small-Diameter Compliant Arterial Graft Prosthesis: Design Concept of Coaxial Double Tubular Graft and its Fabrication
,”
J. Biomed. Mater. Res.
55
, pp.
266
276
.
40.
De Cossart
,
L.
,
How
,
T. V.
, and
Annis
,
D.
, 1989, “
A Two Year Study of the Performance of a Small Diameter Polyurethane (Biomer) Arterial Prostheses
,”
J. Cardiovasc. Surg. (Torino)
,
30
, pp.
388
394
.
41.
Ku
,
D. N.
,
Braddon
,
L. G.
, and
Wootton
D. M.
, 1999,
“Poly(Vinyl Alcohol) Cryogel,”
U.S. Patent No. 5,981,826.
42.
Hayashi
,
K.
,
Stergiopulos
,
N.
,
Meister
,
J. J
,
Greenwald
,
S. E.
, and
Rachev
,
A.
, 2001, “
Techniques in the Determination of the Mechanical Properties and Constitutive Laws of Arterial Walls
,” in
Biomechanical Systems and Applications
,
C. T.
Leondes
, ed.,
Gordon and Breach
,
New York
, pp.
6.1
6.61
.
43.
Williams
,
S.
, 1998,
“Mechanical Testing of a Biomaterial for Potential Use as a Vascular Graft and Auricular Cartilage Replacement,”
M.S. thesis, Georgia Institute of Technology, Atlanta.
44.
Elshazly
,
T.
, 2004,
“Characterization of PVA Hydrogels with Regard to Vascular Graft Development,”
M. S. Thesis
,
Georgia Institute of Technology
,
Atlanta
.
45.
Rachev
,
A.
,
ElShazly
,
T.
, and.
Ku
,
D. N.
, 2004,
“Constitutive Formulation of the Mechanical Properties of Synthetic Hydrogels,”
Proceedings of IMECE04
,
ASME International Mechanical Engineering Congress
,
Anaheim, CA
.
46.
Takamizawa
,
K.
, and
Hayashi
,
K.
, 1987, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
, pp.
7
17
.
47.
Feldan
,
L
, 2005,
“Mechanical Optimization of Vascular Bypass Grafts,”
M.S. Thesis, Georgia Institute of Technology, Atlanta.
48.
Green
,
A. E.
, and
Adkins
,
J. E.
, 1960,
Large Elastic Deformations and Non-Linear Continuum Mechanics,
Oxford University Press.
London
.
49.
Rachev
,
A
, 2003,
“Remodeling of Arteries in Response to Changes in Their Mechanical Environment,” Biomechanics of Soft Tissue in Cardiovascular Systems
,
G.
Holzapfel
and
R.
Ogden
, eds., CISM, Course and Lecture No. 441,
Springer
,
New York
, pp.
100
161
.
50.
Peterson
,
L. H.
,
Jensen
,
R. E.
, and
Parnell
,
J.
, 1960, “
Mechanical Properties of Arteries in Vivo
,”
Circ. Res.
,
8
, pp.
622
639
.
You do not currently have access to this content.