Tissue scaffolds aim to provide a cell-friendly biomechanical environment for facilitating cell growth. Existing studies have shown significant demands for generating a certain level of wall shear stress (WSS) on scaffold microstructural surfaces for promoting cellular response and attachment efficacy. Recently, its role in shear-induced erosion of polymer scaffold has also drawn increasing attention. This paper proposes a bi-directional evolutionary structural optimization (BESO) approach for design of scaffold microstructure in terms of the WSS uniformity criterion, by downgrading highly-stressed solid elements into fluidic elements and/or upgrading lowly-stressed fluidic elements into solid elements. In addition to this, a computational model is presented to simulate shear-induced erosion process. The effective stiffness and permeability of initial and optimized scaffold microstructures are characterized by the finite element based homogenization technique to quantify the variations of mechanical properties of scaffold during erosion. The illustrative examples show that a uniform WSS is achieved within the optimized scaffold microstructures, and their architectural and biomechanical features are maintained for a longer lifetime during shear-induced erosion process. This study provides a mathematical means to the design optimization of cellular biomaterials in terms of the WSS criterion towards controllable shear-induced erosion.

References

References
1.
Langer
,
R.
, and
Vacanti
,
J. P.
, 1993, “
Tissue Engineering
,”
Science
,
260
(
5110
), pp.
920
926
.
2.
Kwon
,
R. Y.
, and
Jacobs
,
C. R.
, 2007, “
Time-Dependent Deformations in Bone Cells Exposed to Fluid Flow in Vitro: Investigating the Role of Cellular Deformation in Fluid Flow-Induced Signaling
,”
J. Biomech.
,
40
(
14
), pp.
3162
3168
.
3.
Davies
,
P. F.
, 1995, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
(
3
), pp.
519
560
.
4.
Chen
,
H. B.
,
Sundararaj
,
U.
, and
Nandakumar
,
K.
, 2004, “
Modeling of Polymer Melting, Drop Deformation, and Breakup Under Shear Flow
,”
Polym. Eng. Sci.
,
44
(
7
), pp.
1258
1266
.
5.
Lin
,
B.
,
Sundararaj
,
U.
,
Mighri
,
F.
, and
Huneault
,
M. A.
, 2003, “
Erosion and Breakup of Polymer Drops Under Simple Shear in High Viscosity Ratio Systems
,”
Polym. Eng. Sci.
,
43
(
4
), pp.
891
904
.
6.
Chen
,
Y. H.
,
Zhou
,
S. W.
, and
Li
,
Q.
, 2011, “
Microstructure Design of Biodegradable Scaffold and its Effect on Tissue Regeneration
,”
Biomaterials
,
32
(
22
), pp.
5003
5014
.
7.
Jacobs
,
C. R.
Temiyasathit
,
S.
and
Castillo
,
A. B.
, 2010, “
Osteocyte Mechanobiology and Pericellular Mechanics
,”
Annu. Rev. Biomed. Eng.
, pp.
369
400
.
8.
Meinel
,
L.
,
Karageorgiou
,
V.
,
Fajardo
,
R.
,
Snyder
,
B.
,
Shinde-Patil
,
V.
,
Zichner
,
L.
,
Kaplan
,
D.
,
Langer
,
R.
, and
Vunjak-Novakovic
,
G.
, 2004, “
Bone Tissue Engineering Using Human Mesenchymal Stem Cells: Effects of Scaffold Material and Medium Flow
,”
Ann. Biomed. Eng.
,
32
(
1
), pp.
112
122
.
9.
Sakai
,
K.
,
Mohtai
,
M.
, and
Iwamoto
,
Y.
, 1998, “
Fluid Shear Stress Increases Transforming Growth Factor Beta 1 Expression in Human Osteoblast-Like Cells: Modulation by Cation Channel Blockades
,”
Calcif. Tissue Int.
,
63
(
6
), pp.
515
520
.
10.
Gao
,
H.
,
Ayyaswamy
,
P. S.
, and
Ducheyne
,
P.
, 1997, “
Dynamics of a mMicrocarrier Particle in the Simulated Microgravity Environment of a Rotating-Wall Vessel
,”
Microgravity Sci. Technol.
,
10
(
3
), pp.
154
165
.
11.
Adachi
,
T.
,
Kameo
,
Y.
, and
Hojo
,
M.
, 2010, “
Trabecular Bone Remodelling Simulation Considering Osteocytic Response to Fluid-Induced Shear Stress
,”
Philos. Trans. R. Soc. London, Ser. A
368
(
1920
), pp.
2669
2682
.
12.
Provin
,
C.
,
Takano
,
K.
,
Sakai
,
Y.
,
Fujii
,
T.
, and
Shirakashi
,
R.
, 2008, “
A Method for the Design of 3D Scaffolds for High-Density Cell Attachment and Determination of Optimum Perfusion Culture Conditions
,”
J. Biomech.
,
41
(
7
), pp.
1436
1449
.
13.
Vanapalli
,
S. A.
,
Ceccio
,
S. L.
, and
Solomon
,
M. J.
, 2006, “
Universal Scaling for Polymer Chain Scission in Turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
45
), pp.
16660
16665
.
14.
Horn
,
A. F.
, 1984, “
Midpoint Scission of Macromolecules in Dilute-Solution in Turbulent-flow
,”
Nature
,
312
(
5990
), pp.
140
141
.
15.
Caruso
,
M. M.
Davis
,
D. A.
Shen
,
Q.
Odom
,
S. A.
Sottos
,
N. R.
White
,
S. R.
and
Moore
,
J. S.
, 2009, “
Mechanically-Induced Chemical Changes in Polymeric Materials
,”
Chem. Rev.
,
109
(
11
), pp.
5755
5798
.
16.
Osborne
,
J. M.
O’Dea
,
R. D.
Whiteley
,
J. P.
Byrne
,
H. M.
and
Waters
,
S. L.
, 2010, “
The Influence of Bioreactor Geometry and the Mechanical Environment on Engineered Tissues
,”
ASME J. Biomech. Eng.
,
132
(
5
),
12
.
17.
Kao
,
S. V.
and
Mason
,
S. G.
, 1975, “
Dispersion of Particles by Shear
,”
Nature
,
253
(
5493
), pp.
619
621
.
18.
Bawolin
,
N. K.
Li
,
M. G.
Chen
,
X. B.
and
Zhang
,
W. J.
, 2010, “
Modeling Material-Degradation-Induced Elastic Property of Tissue Engineering Scaffolds
,”
ASME J. Biomech. Eng.
,
132
(
11
),
7
.
19.
Hollister
,
S. J.
, 2005, “
Porous Scaffold Design for Tissue Engineering
,”
Nature Mater.
,
4
(
7
), pp.
518
524
.
20.
Hollister
,
S. J.
, 2009, “
Scaffold Design and Manufacturing: from Concept to Clinic
,”
Adv. Mater.
,
21
(
32–33
), pp.
3330
3342
.
21.
Sun
,
W.
,
Darling
,
A.
,
Starly
,
B.
, and
Nam
,
J.
, 2004, “
Computer-Aided Tissue Engineering: Overview, Scope and Challenges
,”
Biotechnol. Appl. Biochem.
,
39
, pp.
29
47
.
22.
Khalil
,
S.
, and
Sun
,
W.
, 2009, “
Bioprinting Endothelial Cells With Alginate for 3D Tissue Constructs
,”
ASME J. Biomech. Eng.
,
131
(
11
),
8
.
23.
Challis
,
V. J.
,
Roberts
,
A. P.
,
Grotowski
,
J. F.
,
Zhang
,
L. C.
, and
Sercombe
,
T. B.
, 2010, “
Prototypes for Bone Implant Scaffolds Designed via Topology Optimization and Manufactured by Solid Freeform Fabrication
,”
Adv. Eng. Mater.
,
12
(
11
), pp.
1106
1110
.
24.
Lin
,
C. Y.
Kikuchi
,
N.
and
Hollister
,
S. J.
, 2004, “
A Novel Method for Biomaterial Scaffold Internal Architecture Design to Match Bone Elastic Properties with Desired Porosity
,”
J. Biomech.
,
37
(
5
), pp.
623
636
.
25.
Zhou
,
S. W.
and
Li
,
Q.
, 2007, “
The Relation of Constant Mean Curvature Surfaces to Multiphase Composites with Extremal Thermal Conductivity
,”
J. Phys. D:Appl. Phys.
,
40
, pp.
6083
6093
.
26.
Torquato
,
S.
Hyun
,
S.
and
Donev
,
A.
, 2002, “
Multifunctional Composites: Optimizing Microstructures for Simultaneous Transport of Heat and Electricity
,”
Phys. Rev. Lett.
,
89
(
26
).
27.
Torquato
,
S.
Hyun
,
S.
and
Donev
,
A.
, 2003, “
Optimal Design of Manufacturable Three-Dimensional Composites with Multifunctional Characteristics
,”
J. Appl. Phys.
,
94
(
9
), pp.
5748
5755
.
28.
Chen
,
Y. H.
Zhou
,
S. W.
and
Li
,
Q.
, 2009, “
Computational Design for Multifunctional Microstructural Composites
,”
Int. J. Mod. Phys. B
,
23
(
6–7
), pp.
1345
1351
.
29.
Chen
,
Y. H.
Zhou
,
S. W.
and
Li
,
Q.
, 2010, “
Multiobjective Topology Optimization for Finite Periodic Structures
,”
Comput. Struct.
,
88
(
11–12
), pp.
806
811
.
30.
Guest
,
J. K.
and
Prevost
,
J. H.
, 2006b, “
Optimizing Multifunctional Materials: Design of Microstructures for Maximized Stiffness and Fluid Permeability
,”
Int. J. Solids Struct.
,
43
(
22–23
), pp.
7028
7047
.
31.
Kang
,
H.
Lin
,
C. Y.
and
Hollister
,
S. J.
, 2010, “
Topology Optimization of Three Dimensional Tissue Engineering Scaffold Architectures for Prescribed Bulk Modulus and Diffusivity
,”
Struct. Multidiscip. Optim.
,
42
(
4
), pp.
633
644
.
32.
Huang
,
X.
and
Xie
,
Y. M.
, 2009, “
Bi-Directional Evolutionary Topology Optimization of Continuum Structures with One or Multiple Materials
,”
Comput. Mech.
,
43
(
3
), pp.
393
401
.
33.
Huang
,
X. D.
and
Xie
,
Y. M.
, 2010,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
Wiley
,
NY
.
34.
Jacobs
,
C. R.
,
Yellowley
,
C. E.
,
Davis
,
B. R.
,
Zhou
,
Z.
,
Cimbala
,
J. M.
, and
Donahue
,
H. J.
, 1998, “
Differential Effect of Steady Versus Oscillating Flow on Bone Cells
,”
J. Biomech.
,
31
(
11
), pp.
969
976
.
35.
Khaled
,
A. R. A.
, and
Vafai
,
K.
, 2003, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
46
(
26
), pp.
4989
5003
.
36.
Yeatts
,
A. B.
and
Fisher
,
J. P.
, 2011, “
Bone Tissue Engineering Bioreactors: Dynamic Culture and the Influence of Shear Stress
,”
Bone
,
48
(
2
), pp.
171
181
.
37.
Maes
,
F.
Ransbeeck
,
P.
Van Oosterwyck
,
H.
and
Verdonck
,
P.
, 2009, “
Modeling Fluid Flow Through Irregular Scaffolds for Perfusion Bioreactors
,”
Biotechnol. Bioeng.
,
103
, pp.
621
630
.
38.
Querin
,
O. M.
Steven
,
G. P.
and
Xie
,
Y. M.
, 1998, “
Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm
,”
Eng. Comput.
,
15
(
8
), pp.
1031
1048.
39.
Li
,
Q.
Steven
,
G. P.
and
Xie
,
Y. M.
, 2001, “
A Simple Checkerboard Suppression Algorithm for Evolutionary Structural Optimization
,”
Struct. Multidiscip. Optim.
,
22
(
3
), pp.
230
239
.
40.
Chen
,
Y. H.
Zhou
,
S. W.
and
Li
,
Q.
, 2011, “
Mathematical Modeling of Degradation for Bulk-Erosive Polymers: Applications in Tissue Engineering Scaffolds and Drug Delivery Systems
,”
Acta Biomater.
,
7
(
3
), pp.
1140
1149
.
41.
Culter
,
J. D.
,
Zakin
,
J. L.
, and
Patterson
,
G. K.
, 1975, “
Mechanical Degradation of Dilute-Solutions of High Polymers in Capillary Tube Flow
,”
J. Appl. Polym. Sci.
,
19
(
12
), pp.
3235
3240
.
42.
Hassani
,
B.
, and
Hinton
,
E.
, 1998, “
A Review of Homogenization and Topology Optimization II - Analytical and Numerical Solution of Homogenization Equations
,”
Comput. Struct.
,
69
(
6
), pp.
719
738
.
43.
Zhou
,
S.
and
Li
,
Q.
, 2008, “
Computational Design of Multi-Phase Microstructural Materials for Extremal Conductivity
,”
Comput. Mater. Sci.
,
43
(
3
), pp.
549
564
.
44.
Porter
,
B.
Zauel
,
R.
Stockman
,
H.
Guldberg
,
R.
and
Fyhrie
,
D.
, 2005, “
3-D Computational Modeling of Media Flow Through Scaffolds in a Perfusion Bioreactor
,”
J. Biomech.
,
38
(
3
), pp.
543
549
.
45.
Boschetti
,
F.
Raimondi
,
M. T.
Migliavacca
,
F.
and
Dubini
,
G.
, 2006, “
Prediction of the Micro-Fluid Dynamic Environment Imposed to Three-Dimensional Engineered Cell Systems in Bioreactors
,”
J. Biomech.
,
39
(
3
), pp.
418
425
.
46.
Cioffi
,
M.
Boschetti
,
F.
Raimondi
,
M. T.
and
Dubini
,
G.
, 2006, “
Modeling eEvaluation of the fFluid-dDynamic mMicroenvironment in Tissue-Engineered Constructs: A Micro-CT Based Model
,”
Biotechnol. Bioeng.
,
93
(
3
), pp.
500
510
.
47.
Milan
,
J. L.
Planell
,
J. A.
and
Lacroix
,
D.
, 2009, “
Computational Modelling of the Mechanical Environment of Osteogenesis within a Polylactic Acid-Calcium Phosphate Glass Scaffold
,”
Biomaterials
,
30
(
25
), pp.
4219
4226
.
48.
Steven
,
G. P.
Li
,
Q.
and
Xie
,
Y. M.
, 2000, “
Evolutionary tTopology and sShape dDesign for gGeneral pPhysical fField pProblems
,”
Comput. Mech.
,
26
(
2
), pp.
129
139
.
49.
Borrvall
,
T.
and
Petersson
,
J.
, 2003, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.
50.
Zhou
,
S. W.
and
Li
,
Q.
, 2008, “
A Variational Level Set Method for the Topology Optimization of Steady-State Navier-Stokes Flow
,”
J. Comput. Phys.
,
227
(
24
), pp.
10178
10195
.
51.
Rajagopalan
,
S.
and
Robb
,
R. A.
, 2006, “
Schwarz Meets Schwann: Design and Fabrication of Biomorphic and Durataxic Tissue Engineering Scaffolds
,”
Med. Image Anal.
,
10
, pp.
693
712
.
52.
Hollister
,
S. J.
Fyhrie
,
D. P.
Jepsen
,
K. J.
and
Goldstein
,
S. A.
, 1991, “
Application of Homogenization Theory to the Study of Trabecular Bone Mechanics
,”
J. Biomech.
,
24
(
9
), pp.
825
839
.
53.
Sturm
,
S.
Zhou
,
S. W.
Mai
,
Y. W.
and
Li
,
Q.
, 2010, “
On Stiffness of Scaffolds for Bone Tissue Engineering - A Numerical Study
,”
J. Biomech.
,
43
, pp.
1738
1744
.
54.
Sanz-Herrera
,
J. A.
Garcia-Aznar
,
J. M.
and
Doblare
,
M.
, 2009, “
On Scaffold Designing For Bone Regeneration: A Computational Multiscale Approach
,”
Acta Biomater.
,
5
(
1
), pp.
219
229
.
55.
Victoria
,
M.
Querin
,
O. M.
and
Marti
,
P.
, 2010, “
Topology Design for Multiple Loading Conditions of Continuum Structures Using Isolines and Isosurfaces
,”
Finite Elem. Anal. Des.
,
46
(
3
), pp.
229
237
.
56.
Chen
,
Y. H.
Zhou
,
S. W.
Cadman
,
J.
and
Li
,
Q.
, 2010, “
Design of Cellular Porous Biomaterials for Wall Shear Stress Criterion
,”
Biotechnol. Bioeng.
,
107
(
4
), pp.
737
746
.
57.
Adachi
,
T.
Osako
,
Y.
Tanaka
,
M.
Hojo
,
M.
and
Hollister
,
S. J.
, 2006, “
Framework for Optimal Design of Porous Scaffold Microstructure by Computational Simulation of Bone Regeneration
,”
Biomaterials
,
27
(
21
), pp.
3964
3972
.
58.
Sutradhar
,
A.
Paulino
,
G. H.
Miller
,
M. J.
and
Nguyen
,
T. H.
, 2010, “
Topological Optimization for Designing Patient-Specific Large Craniofacial Segmental Bone Replacements
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
30
), pp.
13222
13227
.
You do not currently have access to this content.