A nonlinear biphasic fiber-reinforced porohyperviscoelastic (BFPHVE) model of articular cartilage incorporating fiber reorientation effects during applied load was used to predict the response of ovine articular cartilage at relatively high strains (20%). The constitutive material parameters were determined using a coupled finite element-optimization algorithm that utilized stress relaxation indentation tests at relatively high strains. The proposed model incorporates the strain-hardening, tension-compression, permeability, and finite deformation nonlinearities that inherently exist in cartilage, and accounts for effects associated with fiber dispersion and reorientation and intrinsic viscoelasticity at relatively high strains. A new optimization cost function was used to overcome problems associated with large peak-to-peak differences between the predicted finite element and experimental loads that were due to the large strain levels utilized in the experiments. The optimized material parameters were found to be insensitive to the initial guesses. Using experimental data from the literature, the model was also able to predict both the lateral displacement and reaction force in unconfined compression, and the reaction force in an indentation test with a single set of material parameters. Finally, it was demonstrated that neglecting the effects of fiber reorientation and dispersion resulted in poorer agreement with experiments than when they were considered. There was an indication that the proposed BFPHVE model, which includes the intrinsic viscoelasticity of the nonfibrillar matrix (proteoglycan), might be used to model the behavior of cartilage up to relatively high strains (20%). The maximum percentage error between the indentation force predicted by the FE model using the optimized material parameters and that measured experimentally was 3%.

References

1.
Terzaghi
,
K.
, 1951,
Theoretical Soil Mechanics
,
John Wiley and Sons
,
New York
.
2.
Biot
,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.
3.
Biot
,
M. A.
, 1962, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
33
, pp.
1482
1498
.
4.
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1978,
“A Biphasic Rheological Model of Articular Cartilage
,”
Advances in Bioengineering
,
R. C.
Eberhardt
and
A. H.
Burstein
, Eds.,
ASME
,
New York
, p.
17
.
5.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
6.
Mak
,
A. F.
, 1986, “
Unconfined Compression of Hydrated Viscoelastic Tissues: A Biphasic Poroviscoelastic Analysis
,”
Biorheology
,
23
, pp.
371
383
.
7.
Suh
,
J. K. F.
, and
DiSilvestro
,
M. R.
, 1999, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
J. Appl. Mech.
,
66
, pp.
528
535
.
8.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
, 1981, “
Effects of Nonlinear Strain Dependent Permeability and Rate of 34 Compressions on the Stress Behaviour of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
103
, pp.
61
66
.
9.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 1998, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
, pp.
927
934
.
10.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
A Cone Wise Linear Elasticity Mixture Model for the Analysis of Tension Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
, pp.
576
586
.
11.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
,
120
, pp.
491
496
.
12.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
,
J. K.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II. Effect of Variable Strain Rates
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
198
200
.
13.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J. K. F.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I. Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
ASME J. Biomech. Eng.
,
123
, pp.
191
197
.
14.
DiSilvestro
,
M. R.
, and
Suh
,
J. K. F
, 2001, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
,
34
, pp.
519
525
.
15.
Suh
,
J. K. F.
, and
Bai
,
S.
, 1977, “
Biphasic Poroviscoelastic Behaviour of Articular Cartilage in Creep Indentation Test
,”
Transactions of the 43rd Annual Meeting of the Orthopedic Research Society
,
San Francisco, CA
,
22
, p.
823
.
16.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
A Fibril-Network Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
340
347
.
17.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech.
,
14
(
9
), pp.
673
682
.
18.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2000, “
A Fibril Reinforced Nonhomogeneous Poroelastic Model for Articular Cartilage: Inhomogeneous Response in Unconfined Compression
,”
J. Biomech.
,
33
(
12
), pp.
1533
1541
.
19.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2001, “
The Asymmetry of Transient Response in Compression Versus Release for Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
123
, pp.
519
522
.
20.
Li
,
L. P.
,
Shirazi-Adl
,
A.
, and
Buschmann
,
M. D.
, 2002, “
Alterations in Mechanical Behaviour of Articular Cartilage Due to Changes in Depth Varying Material Properties—A Nonhomogeneous Poroelastic Model Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
1
), pp.
45
52
.
21.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2003, “
Strain-Rate Dependent Stiffness of Articular Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
161
168
.
22.
Fulin
,
L.
, and
Szeri
,
A. Z.
, 2007, “
Inverse Analysis of Constitutive Models: Biological Soft Tissues
,”
J. Biomech.
,
40
, pp.
936
940
.
23.
Li
,
L. P.
, and
Herzog
,
W.
, 2004, “
Strain-Rate Dependence of Cartilage Stiffness in Unconfined Compression: The Role of Fibril Reinforcement Versus Tissue Volume Change in Fluid Pressurization
,”
J. Biomech.
,
37
(
3
), pp.
375
382
.
24.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
C.
,
Ito
,
K.
, and
Huiskes
,
R.
, 2004, “
Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study
,”
J. Biomech.
,
37
(
3
), pp.
357
366
.
25.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2004, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
,
38
(
6
), pp.
1195
1204
.
26.
Seifzadeh
,
A.
,
Oguamanam
,
D. C. D.
,
Trutiak
,
N.
,
Hurtig
,
M.
, and
Papini
,
M.
, 2011, “
Determination of Nonlinear Fibre-Reinforced Biphasic Poroviscoelastic Constitutive Parameters of Articular Cartilage Using Stress Relaxation Indentation Testing and an Optimizing Finite Element Analysis
,”
Computer Methods and Programs in Biomedicine
, doi:10.1016/j.cmpb.2011.07.004.
27.
Holmes
,
M. H.
, and
Mow
,
V. C.
, 1990, “
The Non-linear Characteristics of Soft Gels and Hydrate Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
, pp.
1145
1156
.
28.
Limbert
,
G.
, and
Middleton
,
J.
, 2004, “
Atransversly Isotropic Viscohyperelastic Material; Application to the Modeling of Biological Soft Connecting Tissues
,”
Int. J. Solids Struct.
,
41
, pp.
4237
4260
.
29.
Garcia
,
J. J.
, and
Cortés
,
D. H.
, 2007, “
A Biphasic Viscohyperelastic Fibril-Reinforced Model for Articular Cartilage: Formulation and Comparison With Experimental Data
,”
J. Biomech.
,
40
, pp.
1737
1744
.
30.
Olberding
,
J. E.
, and
Suh
,
J. -K. F. F.
, 2006, “
A Dual Optimization Method for the Material Parameter Identification of a Biphasic Poroviscoelastic Hydrogel: Potential Application to Hypercompliant Soft Tissues
,”
J. Biomech.
,
39
, pp.
2468
2475
.
31.
Cao
,
L.
,
Youn Inchan
,
I.
,
Guilak
,
F.
, and
Setton Lori
,
A.
, 2006, “
Compressive Properties of Mouse Articular Cartilage Determined in a Novel Micro-Indentation Test Method and Biphasic Finite Element Model
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
766
772
.
32.
Kandel
,
R. A.
,
Grynpas
,
M.
,
Pilliar
,
R.
,
Lee
,
J.
,
Wang
,
J.
,
Waldman
,
S.
,
Zalzal
,
P.
,
Hurtig
,
M.
, 2006, “
Repair of Osteochondral Defects With Biphasic Cartilage-Calcium Polyphosphate Constructs in a Sheep Model
,”
J. Biomater.
,
27
, pp.
4120
4131
.
33.
Ogden
,
R. W.
, 1997,
Non-linear Elastic Deformations
,
Dover
,
New York
.
34.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics, A Continuum Approach for Engineering
,
John Wiley & Son
,
Chichester
.
35.
Flory
,
P. J.
, 1961, “
Thermodynamic Relations for Highly Elastic Materials
,”
Trans. Faraday Soc.
,
57
, pp.
829
838
.
36.
Ogden
,
R. W.
, 1978, “
Nearly Isochoric Elastic Deformations: Application to Rubberlike Solids
,”
J. Mech. Phys. Solids
,
26
, pp.
37
57
.
37.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
, 2007, “
An Anisotropic Visco-hyperelastic Model for Ligaments at Finite Strains. Formulation and Computational Aspects
,”
Int. J. Solids Struct.
,
44
, pp.
760
778
.
38.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
, pp.
15
35
.
39.
Lanir
,
Y.
,
Lichtenstein
,
O.
,
Imanuel
,
O.
, 1996, “
Optimal Design of Biaxial Tests for Structural Material Characterization of Flat Tissues
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
41
47
.
40.
Spencer
,
A. J. M.
, 1984, “
Constitutive Theory for Strongly Anisotropic Solids
,” in
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
A. J. M.
Spencer
, Ed.,
Springer
,
Wien
, pp.
1
32
.
41.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
, 2001, “
A Viscoelastic Model for Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
4379
4430
.
42.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R.W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.
43.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface.
,
3
(
6
), pp.
15
35
.
44.
ABAQUS Manual, 2006, ver. 6.3, Hibbit, Karlson, and Sorenson, Pawtucket, RI.
45.
Li
,
L. P.
,
Solhat
,
J.
,
Buschman
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech.
,
14
, pp.
673
682
.
46.
Spilker
,
R. L.
,
Suh
J.-K.
, and
Mow
,
V. C.
, 1990, “
Formulation and Evaluation of a Finite Element Model for the Biphasic Model of Hydrated Soft Tissues
,”
Comput. Struct.
,
35
(
4
), pp.
425
439
.
47.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
, and
Buckwalter
,
J. A,
1991, “
Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
,
9
, pp.
330
340
.
48.
Hwang
,
N. H. C.
, and
Woo
,
S. L.-Y.
, 2003,
Frontiers in Biomedical Engineering
,
Kluwer Academic/Plenum
,
New York.
49.
Clark
,
J. M.
, 1991, “
Variation of Collagen Fiber Alignment in a Joint Surface: A Scanning Electron Microscope Study of the Tibial Plateau in Dog, Rabbit, and Man
,”
J. Orthop. Res.
,
9
, pp.
246
257
.
50.
Clark
,
J. M.
, 1990, “
The Organization of Collagen Fibrils in the Superficial Zones of Articular Cartilage
,”
J. Anat.
,
171
, pp.
117
130
.
You do not currently have access to this content.