Ejection from military aircraft exerts substantial loads on the lumbar spine. Fractures remain common, although the overall survivability of the event has considerably increased over recent decades. The present study was performed to develop and validate a biomechanically accurate experimental model for the high vertical acceleration loading to the lumbar spine that occurs during the catapult phase of aircraft ejection. The model consisted of a vertical drop tower with two horizontal platforms attached to a monorail using low friction linear bearings. A total of four human cadaveric spine specimens (T12-L5) were tested. Each lumbar column was attached to the lower platform through a load cell. Weights were added to the upper platform to match the thorax, head-neck, and upper extremity mass of a 50th percentile male. Both platforms were raised to the drop height and released in unison. Deceleration characteristics of the lower platform were modulated by foam at the bottom of the drop tower. The upper platform applied compressive inertial loads to the top of the specimen during deceleration. All specimens demonstrated complex bending during ejection simulations, with the pattern dependent upon the anterior-posterior location of load application. The model demonstrated adequate inter-specimen kinematic repeatability on a spinal level-by-level basis under different subfailure loading scenarios. One specimen was then exposed to additional tests of increasing acceleration to induce identifiable injury and validate the model as an injury-producing system. Multiple noncontiguous vertebral fractures were obtained at an acceleration of 21 g with 488 g/s rate of onset. This clinically relevant trauma consisted of burst fracture at L1 and wedge fracture at L4. Compression of the vertebral body approached 60% during the failure test, with -6,106 N axial force and 168 Nm flexion moment. Future applications of this model include developing a better understanding of the vertebral injury mechanism during pilot ejection and developing tolerance limits for injuries sustained under a variety of different vertical acceleration scenarios.

References

References
1.
Smiley
,
J. R.
, 1965, “
RCAF Ejection Experience 1952–1961
,” RCAF Institute of Aviation Medicine, Toronto, Ontario, Report No. AD0465171.
2.
Smelsey
,
S. O.
, 1970, “
Study of Pilots Who Have Made Multiple Ejections
,”
Aerosp. Med.
,
41
(
5
), pp.
563
566
.
3.
Werner
,
U.
, 1999, “
Ejection Associated Injuries Within the German Air Force From 1981–1997
,”
Aviat. Space Environ. Med.
,
70
(
12
), pp.
1230
1234
.
4.
Visuri
,
T.
, and
Aho
,
J.
, 1992, “
Injuries Associated With the Use of Ejection Seats in Finnish Pilots
,”
Aviat. Space Environ. Med.
,
63
(
8
), pp.
727
730
.
5.
Rowe
,
K. W.
, and
Brooks
,
C. J.
, 1984, “
Head and Neck Injuries in Canadian Forces Ejections
,”
Aviat. Space Environ. Med.
,
55
(
4
), pp.
313
315
.
6.
Sandstedt
,
P.
, 1989, “
Experiences of Rocket Seat Ejections in the Swedish Air Force: 1967–1987
,”
Aviat. Space Environ. Med.
,
60
(
4
), pp.
367
373
.
7.
Newman
,
D. G.
, 1995, “
The Ejection Experience of the Royal Australian Air Force: 1951–92
,”
Aviat. Space Environ. Med.
,
66
(
1
), pp.
45
49
.
8.
Harrison
,
W. D.
, 1980, “
Ejection Experience in F/FB-111 Aircraft-1967–1978
.”
Proceedings of the Survival and Flight Equipment Association, Annual Symposium, 17th
, Las Vegas, NV, Dec. 2–6, 1979, Canoga Park, CA, SAFE Association, Creswell, OR, p.
180
182
.
9.
Hearon
,
B. F.
,
Thomas
,
H. A.
, and
Raddin
,
J. H.
, Jr.
, 1982, “
Mechanism of Vertebral Fracture in the F/FB-111 Ejection Experience
,”
Aviat Space Environ Med
,
53
(
5
), pp.
440
448
.
10.
Lewis
,
M. E.
, 2006, “
Survivability and Injuries From Use of Rocket-Assisted Ejection Seats: Analysis of 232 Cases
,”
Aviat Space Environ Med
,
77
(
9
), pp.
936
943
.
11.
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Kifune
,
M.
,
Arand
,
M.
,
Wen
,
L.
, and
Chen
,
A.
, 1995, “
Validity of the Three-Column Theory of Thoracolumbar Fractures. A Biomechanic Investigation
,”
Spine (Phila Pa 1976)
,
20
(
10
), pp.
1122
1127
.
12.
Tran
,
N. T.
,
Watson
,
N. A.
,
Tencer
,
A. F.
,
Ching
,
R. P.
, and
Anderson
,
P. A.
, 1995, “
Mechanism of the Burst Fracture in the Thoracolumbar Spine. The Effect of Loading Rate
,”
Spine
,
20
(
18
), pp.
1984
1988
.
13.
Willen
,
J.
,
Lindahl
,
S.
,
Irstam
,
L.
,
Aldman
,
B.
, and
Nordwall
,
A.
, 1984, “
The Thoracolumbar Crush Fracture. An Experimental Study on Instant Axial Dynamic Loading: The Resulting Fracture Type and Its Stability
,”
Spine
,
9
(
6
), pp.
624
631
.
14.
Cain
,
J. E.
, Jr.
,
DeJong
,
J. T.
,
Dinenberg
,
A. S.
,
Stefko
,
R. M.
,
Platenburg
,
R. C.
, and
Lauerman
,
W. C.
, 1993, “
Pathomechanical Analysis of Thoracolumbar Burst Fracture Reduction. A Calf Spine Model
,”
Spine
,
18
(
12
), pp.
1647
1654
.
15.
Cotterill
,
P. C.
,
Kostuik
,
J. P.
,
Wilson
,
J. A.
,
Fernie
,
G. R.
, and
Maki
,
B. E.
, 1987, “
Production of a Reproducible Spinal Burst Fracture for Use in Biomechanical Testing
,”
J. Orthop. Res.
,
5
(
3
), pp.
462
465
.
16.
Fredrickson
,
B. E.
,
Edwards
,
W. T.
,
Rauschning
,
W.
,
Bayley
,
J. C.
, and
Yuan
,
H. A.
, 1992, “
Vertebral Burst Fractures: An Experimental, Morphologic, and Radiographic Study
,”
Spine
,
17
(
9
), pp.
1012
1021
.
17.
Wilcox
,
R. K.
,
Boerger
,
T. O.
,
Allen
,
D. J.
,
Barton
,
D. C.
,
Limb
,
D.
,
Dickson
,
R. A.
, and
Hall
,
R. M.
, 2003, “
A Dynamic Study of Thoracolumbar Burst Fractures
,”
J. Bone Joint Surg. Am.
,
85A
(
11
), pp.
2184
2189
.
18.
Duma
,
S. M.
,
Kemper
,
A. R.
,
McNeely
,
D. M.
,
Brolinson
,
P. G.
, and
Matsuoka
,
F.
, 2006, “
Biomechanical Response of the Lumbar Spine in Dynamic Compression
,”
Biomed. Sci. Instrum.
,
42
, pp.
476
481
.
19.
Hoshikawa
,
T.
,
Tanaka
,
Y.
,
Kokubun
,
S.
,
Lu
,
W. W.
,
Luk
,
K. D.
, and
Leong
,
J. C.
, 2002, “
Flexion-Distraction Injuries in the Thoracolumbar Spine: An In Vitro Study of the Relation Between Flexion Angle and the Motion Axis of Fracture
,”
J. Spinal Disord. Tech.
,
15
(
2
), pp.
139
143
.
20.
Ochia
,
R. S.
,
Tencer
,
A. F.
, and
Ching
,
R. P.
, 2003, “
Effect of Loading Rate on Endplate and Vertebral Body Strength in Human Lumbar Vertebrae
,”
J. Biomech.
,
36
(
12
), pp.
1875
1881
.
21.
Shirado
,
O.
,
Kaneda
,
K.
,
Tadano
,
S.
,
Ishikawa
,
H.
,
McAfee
,
P. C.
, and
Warden
,
K. E.
, 1992, “
Influence of Disc Degeneration on Mechanism of Thoracolumbar Burst Fractures
,”
Spine
,
17
(
3
), pp.
286
292
.
22.
Yoganandan
,
N.
,
Larson
,
S. J.
,
Pintar
,
F.
,
Maiman
,
D. J.
,
Reinartz
,
J.
, and
Sances
,
A.
, Jr.
, 1990, “
Biomechanics of Lumbar Pedicle Screw/Plate Fixation in Trauma
,”
Neurosurgery
,
27
(
6
), pp.
873
880
.
23.
Langrana
,
N. A.
,
Harten
,
R. R.
,
Lin
,
D. C.
,
Reiter
,
M. F.
, and
Lee
,
C. K.
, 2002, “
Acute Thoracolumbar Burst Fractures: A New View of Loading Mechanisms
,”
Spine
,
27
(
5
), pp.
498
508
.
24.
Hongo
,
M.
,
Abe
,
E.
,
Shimada
,
Y.
,
Murai
,
H.
,
Ishikawa
,
N.
, and
Sato
,
K.
, 1999, “
Surface Strain Distribution on Thoracic and Lumbar Vertebrae Under Axial Compression. The Role in Burst Fractures
,”
Spine
,
24
(
12
), pp.
1197
1202
.
25.
Yoganandan
,
N.
,
Pintar
,
F.
,
Sances
,
A.
, Jr.
,
Myklebust
,
J.
,
Schmaltz
,
D.
,
Reinartz
,
J.
,
Harris
,
G.
,
Kalbfleisch
,
J.
,
Chintapalli
,
K.
, and
Larson
,
S.
, 1988, “
Steering Wheel Induced Facial Trauma
,”
32nd Stapp Car Crash Conference, Atlanta
, GA, Society of Automotive Engineers, Inc., Warrendale, PA, pp.
45
69
.
26.
Damavandi
,
M.
,
Farahpour
,
N.
, and
Allard
,
P.
, 2009, “
Determination of Body Segment Masses and Centers of Mass Using a Force Plate Method in Individuals of Different Morphology
,”
Med. Eng. Phys.
,
31
(
9
), pp.
1187
1194
.
27.
Pearsall
,
D. J.
,
Reid
,
J. G.
, and
Livingston
,
L. A.
, 1996, “
Segmental Inertial Parameters of the Human Trunk as Determined From Computed Tomography
,”
Ann. Biomed. Eng.
,
24
(
2
), pp.
198
210
.
28.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Zhang
,
J.
, and
Baisden
,
J. L.
, 2009, “
Physical Properties of the Human Head: Mass, Center of Gravity and Moment of Inertia
,”
J. Biomech.
,
42
(
9
), pp.
1177
1192
.
29.
Society of Automotive Engineers (SAE), 1995, “
Instrumentation for Impact Test - Part 1
,” Society of Automotive Engineers, Warrendale, PA, Report No. SAE J211/1.
30.
Shono
,
Y.
,
McAfee
,
P. C.
, and
Cunningham
,
B. W.
, 1994, “
Experimental Study of Thoracolumbar Burst Fractures. A Radiographic and Biomechanical Analysis of Anterior and Posterior Instrumentation Systems
,”
Spine
,
19
(
15
), pp.
1711
1722
.
31.
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Lin
,
R. M.
, and
McGowen
,
T. W.
, 1994, “
Thoracolumbar Burst Fracture. A Biomechanical Investigation of Its Multidirectional Flexibility
,”
Spine
,
19
(
5
), pp.
578
585
.
32.
Panjabi
,
M. M.
,
Kifune
,
M.
,
Liu
,
W.
,
Arand
,
M.
,
Vasavada
,
A.
, and
Oxland
,
T. R.
, 1998, “
Graded Thoracolumbar Spinal Injuries: Development of Multidirectional Instability
,”
Eur. Spine J.
,
7
(
4
), pp.
332
339
.
33.
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1983, “
The Effect of Posture on the Fluid Content of Lumbar Intervertebral Discs
,”
Spine
,
8
(
6
), pp.
665
671
.
34.
Brinckmann
,
P.
,
Frobin
,
W.
,
Hierholzer
,
E.
, and
Horst
,
M.
, 1983, “
Deformation of the Vertebral End-Plate Under Axial Loading of the Spine
,”
Spine
,
8
(
8
), pp.
851
856
.
35.
Brown
,
S. H.
,
Gregory
,
D. E.
, and
McGill
,
S. M.
, 2008, “
Vertebral End-Plate Fractures as a Result of High Rate Pressure Loading in the Nucleus of the Young Adult Porcine Spine
,”
J. Biomech.
,
41
(
1
), pp.
122
127
.
36.
Gunning
,
J. L.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 2001, “
Spinal Posture and Prior Loading History Modulate Compressive Strength and Type of Failure in the Spine: A Biomechanical Study Using a Porcine Cervical Spine Model
,”
Clin. Biomech.
,
16
(
6
), pp.
471
480
.
37.
Parkinson
,
R. J.
, and
Callaghan
,
J. P.
, 2009, “
The Role of Dynamic Flexion in Spine Injury is Altered by Increasing Dynamic Load Magnitude
,”
Clin. Biomech.
,
24
(
2
), pp.
148
154
.
38.
Nakamura
,
A.
, 2007, “
Ejection Experience 1956–2004 in Japan: An Epidemiological Study
,”
Aviat. Space Environ. Med.
,
78
(
1
), pp.
54
58
.
39.
Moreno Vazquez
,
J. M.
,
Duran Tejeda
,
M. R.
, and
Garcia Alcon
,
J. L.
, 1999, “
Report of Ejections in the Spanish Air Force, 1979–1995: An Epidemiological and Comparative Study
,”
Aviat. Space Environ. Med.
,
70
(
7
), pp.
686
691
.
40.
Sturgeon
,
W. R.
, 1988, “
Canadian Forces Aircrew Ejection, Descent, and Landing Injuries: 1 January 1975–31 December (1987)
,” Defense and Civil Institute of Environmental Medicine, Downsview, Ontario, Report No. DCIEM No. 88-RRR-56.
41.
Milanov
,
L.
, 1996, “
Aircrew Ejections in the Republic of Bulgaria, 1953–93
,”
Aviat. Space Environ. Med.
,
67
(
4
), pp.
364
368
.
42.
Shanahan
,
D. F.
, and
Shanahan
,
M. O.
, 1989, “
Injury in U.S. Army Helicopter Crashes October 1979–September (1985)
,”
J. Trauma
,
29
(
4
), pp.
415
423
.
43.
Richter
,
D.
,
Hahn
,
M. P.
,
Ostermann
,
P. A.
,
Ekkernkamp
,
A.
, and
Muhr
,
G.
, 1996, “
Vertical Deceleration Injuries: A Comparative Study of the Injury Patterns of 101 Patients After Accidental and Intentional High Falls
,”
Injury
,
27
(
9
), pp.
655
659
.
44.
Hsu
,
J. M.
,
Joseph
,
T.
, and
Ellis
,
A. M.
, 2003, “
Thoracolumbar Fracture in Blunt Trauma Patients: Guidelines for Diagnosis and Imaging
,”
Injury
,
34
(
6
), pp.
426
433
.
45.
Inamasu
,
J.
, and
Guiot
,
B. H.
, 2007, “
Thoracolumbar Junction Injuries After Motor Vehicle Collision: Are There Differences in Restrained and Nonrestrained Front Seat Occupants?
,”
J. Neurosurg. Spine
,
7
(
3
), pp.
311
314
.
46.
Ragel
,
B. T.
,
Allred
,
C. D.
,
Brevard
,
S.
,
Davis
,
R. T.
, and
Frank
,
E. H.
, 2009, “
Fractures of the Thoracolumbar Spine Sustained by Soldiers in Vehicles Attacked by Improvised Explosive Devices
,”
Spine
,
34
(
22
), pp.
2400
2405
.
47.
Denis
,
F.
, 1983, “
The Three Column Spine and Its Significance in the Classification of Acute Thoracolumbar Spinal Injuries
,”
Spine
,
8
(
8
), pp.
817
831
.
48.
Lin
,
R. M.
,
Panjabi
,
M. M.
, and
Oxland
,
T. R.
, 1993, “
Functional Radiographs of Acute Thoracolumbar Burst Fractures. A Biomechanical Study
,”
Spine
,
18
(
16
), pp.
2431
2437
.
49.
Kifune
,
M.
,
Panjabi
,
M. M.
,
Arand
,
M.
, and
Liu
,
W.
, 1995, “
Fracture Pattern and Instability of Thoracolumbar Injuries
,”
Eur. Spine J.
,
4
(
2
), pp.
98
103
.
50.
Demetropoulos
,
C. K.
,
Yang
,
K. H.
,
Grimm
,
M. J.
,
Artham
,
K. K.
, and
King
,
A. I.
, 1999, “
High Rate Mechanical Properties of the Hybrid III and Cadaveric Lumbar Spines in Flexion and Extension
,”
43rd Stapp Car Crash Conference
, San Diego, CA, Society of Automotive Engineers, Inc., Warrendale, PA, pp.
279
294
.
51.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
, 2001, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine
,
26
(
24
), pp.
2692
2700
.
52.
Dickey
,
J. P.
, and
Kerr
,
D. J.
, 2003, “
Effect of Specimen Length: Are the Mechanics of Individual Motion Segments Comparable in Functional Spinal Units and Multisegment Specimens?
,”
Med. Eng. Phys.
,
25
(
3
), pp.
221
227
.
53.
Bernstein
,
M.
, 2010, “
Easily Missed Thoracolumbar Spine Fractures
,”
Eur. J Radiol.
,
74
(
1
), pp.
6
15
.
54.
Panjabi
,
M. M.
,
Hoffman
,
H.
,
Kato
,
Y.
, and
Cholewicki
,
J.
, 2000, “
Superiority of Incremental Trauma Approach in Experimental Burst Fracture Studies
,”
Clin. Biomech.
,
15
(
2
), pp.
73
78
.
55.
Mermelstein
,
L. E.
,
McLain
,
R. F.
, and
Yerby
,
S. A.
, 1998, “
Reinforcement of Thoracolumbar Burst Fractures With Calcium Phosphate Cement. A Biomechanical Study
,”
Spine
,
23
(
6
), pp.
664
670
.
56.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Sances
,
A.
, Jr.
,
Maiman
,
D. J.
,
Myklebust
,
J.
,
Harris
,
G.
, and
Ray
,
G.
, 1989, “
Biomechanical Investigations of the Human Thoracolumbar Spine
,”
SAE Trans.
,
97
(
5
), pp.
676
681
.
You do not currently have access to this content.