Murine models of disease are a powerful tool for researchers to gain insight into disease formation, progression, and therapies. The biomechanical indicators of diseased tissue provide a unique insight into some of these murine models, since the biomechanical properties in scenarios such as aneurysm and Marfan syndrome can dictate tissue failure and mortality. Understanding the properties of the tissue on the macroscopic scale has been shown to be important, as one can then understand the tissue’s ability to withstand the high stresses seen in the cardiac pulsatile cycle. Alterations in the biomechanical response can foreshadow prospective mechanical failure of the tissue. These alterations are often seen on the microstructural level, and obtaining detailed information on such changes can offer a better understanding of the phenomena seen on the macroscopic level. Unfortunately, mouse models present problems due to the size and delicate features in the mechanical testing of such tissues. In addition, some smaller arteries in large-animal studies (e.g., coronary and cerebral arteries) can present the same issues, and are sometimes unsuitable for planar biaxial testing. The purpose of this paper is to present a robust method for the investigation of the mechanical properties of small arteries and the classification of the microstructural orientation and degree of fiber alignment. This occurs through the cost-efficient modification of a planar biaxial tester that works in conjunction with a two-photon nonlinear microscope. This system provides a means to further investigate how microstructure and mechanical properties are modified in diseased transgenic animals where the tissue is in small tube form. Several other hard-to-test tubular specimens such as cerebral aneurysm arteries and atherosclerotic coronary arteries can also be tested using the described modular device.

References

References
1.
Halloran
,
B. G.
,
Davis
,
V. A.
,
McManus
,
B. M.
,
Lynch
,
T. G.
, and
Baxter
,
B. T.
, 1995, “
Localization of Aortic Disease is Associated With Intrinsic Differences in Aortic Structure
,”
J. Surg. Res.
,
59
(
1
), pp.
17
22
.
2.
Jani
,
B.
, and
Rajkumar
,
C.
, 2006, “
Ageing and Vascular Ageing
,”
Postgrad. Med. J.
,
82
(
968
), pp.
357
362
.
3.
Lipman
,
R. D.
,
Grossman
,
P.
,
Bridges
,
S. E.
,
Hamner
,
J. W.
, and
Taylor
,
J. A.
, 2002, “
Mental Stress Response, Arterial Stiffness, and Baroreflex Sensitivity in Healthy Aging
,”
J. Gerontol. A Biol. Sci. Med. Sci.
,
57
(
7
), pp.
B279
B284
.
4.
Okamoto
,
R. J.
,
Wagenseil
,
J. E.
,
DeLong
,
W. R.
,
Peterson
,
S. J.
,
Kouchoukos
,
N. T.
, and
Sundt
,
T. M.
, 3rd
, 2002, “
Mechanical Properties of Dilated Human Ascending Aorta
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
624
635
.
5.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
, 2010, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
725
736
.
6.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2004, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
815
822
.
7.
Safar
,
M. E.
,
Blacher
,
J.
,
Mourad
,
J. J.
, and
London
,
G. M.
, 2000, “
Stiffness of Carotid Artery Wall Material and Blood Pressure in Humans: Application to Antihypertensive Therapy and Stroke Prevention
,”
Stroke
,
31
(
3
), pp.
782
790
.
8.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.
9.
Fung
,
Y.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
10.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1995, “
Determination of the Mechanical Properties of the Different Layers of Blood Vessels In Vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
,
92
(
6
), pp.
2169
2173
.
11.
Humphrey
,
J. D.
,
Vawter
,
D. L.
, and
Vito
,
R. P.
, 1987, “
Quantification of Strains in Biaxially Tested Soft Tissues
,”
J. Biomech.
,
20
(
1
), pp.
59
65
.
12.
Zoumi
,
A.
,
Lu
,
X.
,
Kassab
,
G. S.
, and
Tromberg
,
B. J.
, 2004, “
Imaging Coronary Artery Microstructure Using Second-Harmonic and Two-Photon Fluorescence Microscopy
,”
Biophys. J.
,
87
(
4
), pp.
2778
2786
.
13.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 1997, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
(
7
), pp.
753
756
.
14.
Humphrey
,
J. D.
,
Wells
,
P. B.
,
Baek
,
S.
,
Hu
,
J. J.
,
McLeroy
,
K.
, and
Yeh
,
A. T.
, 2008, “
A Theoretically-Motivated Biaxial Tissue Culture System With Intravital Microscopy
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
323
334
.
15.
Gleason
,
R. L.
,
Gray
,
S. P.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
, 2004, “
A Multiaxial Computer-Controlled Organ Culture and Biomechanical Device for Mouse Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
787
795
.
16.
Hu
,
J. J.
,
Humphrey
,
J. D.
, and
Yeh
,
A. T.
, 2009, “
Characterization of Engineered Tissue Development Under Biaxial Stretch Using Nonlinear Optical Microscopy
,”
Tissue Eng. Part A
,
15
(
7
), pp.
1553
1564
.
17.
Voytik-Harbin
,
S. L.
,
Roeder
,
B. A.
,
Sturgis
,
J. E.
,
Kokini
,
K.
, and
Robinson
,
J. P.
, 2003, “
Simultaneous Mechanical Loading and Confocal Reflection Microscopy for Three-Dimensional Microbiomechanical Analysis of Biomaterials and Tissue Constructs
,”
Microsc. Microanal.
,
9
(
1
), pp.
74
85
.
18.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
, 2002, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
214
222
.
19.
Wicker
,
B. K.
,
Hutchens
,
H. P.
,
Wu
,
Q.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
, 2008, “
Normal Basilar Artery Structure and Biaxial Mechanical Behaviour
,”
Comput. Methods Biomech. Biomed. Engin.
,
11
(
5
), pp.
539
551
.
20.
Wan
,
W.
,
Yanagisawa
,
H.
, and
Gleason
,
R. L.
, Jr.
, 2010, “
Biomechanical and Microstructural Properties of Common Carotid Arteries From Fibulin-5 Null Mice
,”
Ann. Biomed. Eng.
,
38
(
12
), pp.
3605
3617
.
21.
Gleason
,
R. L.
,
Dye
,
W. W.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
, 2008, “
Quantification of the Mechanical Behavior of Carotid Arteries From Wild-Type, Dystrophin-Deficient, and Sarcoglycan-Delta Knockout Mice
,”
J. Biomech.
,
41
(
15
), pp.
3213
3218
.
22.
Cox
,
G.
,
Kable
,
E.
,
Jones
,
A.
,
Fraser
,
I.
,
Manconi
,
F.
, and
Gorrell
,
M. D.
, 2003, “
3-Dimensional Imaging of Collagen Using Second Harmonic Generation
,”
J. Struct. Biol.
,
141
(
1
), pp.
53
62
.
23.
Zoumi
,
A.
,
Yeh
,
A.
, and
Tromberg
,
B. J.
, 2002, “
Imaging Cells and Extracellular Matrix In Vivo by Using Second-Harmonic Generation and Two-Photon Excited Fluorescence
,”
Proc. Natl. Acad. Sci. U. S. A.
,
99
(
17
), pp.
11014
11019
.
24.
Timmins
,
L. H.
,
Wu
,
Q.
,
Yeh
,
A. T.
,
Moore
,
J. E.
, Jr.
, and
Greenwald
,
S. E.
, 2010, “
Structural Inhomogeneity and Fiber Orientation in the Inner Arterial Media
,”
Am. J. Physiol. Heart Circ. Physiol.
,
298
(
5
), pp.
H1537
H1545
.
25.
Boulesteix
,
T.
,
Pena
,
A. M.
,
Pages
,
N.
,
Godeau
,
G.
,
Sauviat
,
M. P.
,
Beaurepaire
,
E.
, and
Schanne-Klein
,
M. C.
, 2006, “
Micrometer Scale Ex Vivo Multiphoton Imaging of Unstained Arterial Wall Structure
,”
Cytometry A
,
69
(
1
), pp.
20
26
.
26.
Keyes
,
J. T.
,
Borowicz
,
S. M.
,
Rader
,
J. H.
,
Utzinger
,
U.
,
Azhar
,
M.
, and
Vande Geest
,
J. P.
, 2011, “
Design and Demonstration of a Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues With Two-Photon Microscopy
,”
Microsc. Microanal.
,
17
(
2
), pp.
167
175
.
27.
Peti-Peterdi
,
J.
, and
Bell
,
P. D.
, 2008, “
Confocal and Two-Photon Microscopy
,” in
Methods in Molecular Medicine, Vol. 86: Renal Disease: Techniques and Protocols
,
Humana Press
,
Totowa, NJ
, pp.
129
138
.
28.
Syedain
,
Z. H.
,
Meier
,
L. A.
,
Bjork
,
J. W.
,
Lee
,
A.
, and
Tranquillo
,
R. T.
, 2011, “
Implantable Arterial Grafts From Human Fibroblasts and Fibrin Using a Multi-graft Pulsed Flow-Stretch Bioreactor With Noninvasive Strength Monitoring
,”
Biomaterials
,
32
(
3
), pp.
714
722
.
29.
Debes
,
J. C.
, and
Fung
,
Y. C.
, 1995, “
Biaxial Mechanics of Excised Canine Pulmonary Arteries
,”
Am. J. Physiol.
,
269
(
2 Pt 2
), pp.
H433
H442
.
30.
Kirkpatrick
,
N. D.
,
Andreou
,
S.
,
Hoying
,
J. B.
, and
Utzinger
,
U.
, 2007, “
Live Imaging of Collagen Remodeling During Angiogenesis
,”
Am. J. Physiol. Heart. Circ. Physiol.
,
292
(
6
), pp.
H3198
H3206
.
31.
Azhar
,
M.
,
Runyan
,
R. B.
,
Gard
,
C.
,
Sanford
,
L. P.
,
Miller
,
M. L.
,
Andringa
,
A.
,
Pawlowski
,
S.
,
Rajan
,
S.
, and
Doetschman
,
T.
, 2009, “
Ligand-Specific Function of Transforming Growth Factor Beta in Epithelial-Mesenchymal Transition in Heart Development
,”
Dev. Dyn.
,
238
(
2
), pp.
431
442
.
32.
Meyer
,
J. W.
,
Flagella
,
M.
,
Sutliff
,
R. L.
,
Lorenz
,
J. N.
,
Nieman
,
M. L.
,
Weber
,
C. S.
,
Paul
,
R. J.
, and
Shull
,
G. E.
, 2002, “
Decreased Blood Pressure and Vascular Smooth Muscle Tone in Mice Lacking Basolateral Na(+)-K(+)-2Cl(-) Cotransporter
,”
Am. J. Physiol. Heart Circ. Physiol.
,
283
(
5
), pp.
H1846
H1855
.
33.
Zemanek
,
M. B. J.
, and
Detak
M
, 2009, “
Biaxial Tension Tests With Soft Tissues of Arterial Wall
,”
Eng. Mech.
,
16
(
1
), pp.
3
11
.
34.
Cattell
,
M. A.
,
Anderson
,
J. C.
, and
Hasleton
,
P. S.
, 1996, “
Age-Related Changes in Amounts and Concentrations of Collagen and Elastin in Normotensive Human Thoracic Aorta
,”
Clin. Chim. Acta.
,
245
(
1
), pp.
73
84
.
35.
Sakuraoka
,
K.
,
Tajima
,
S.
,
Seyama
,
Y.
,
Teramoto
,
K.
, and
Ishibashi
,
M.
, 1996, “
Analysis of Connective Tissue Macromolecular Components in Ishibashi Rat Skin: Role of Collagen and Elastin in Cutaneous Aging
,”
J. Dermatol. Sci.
,
12
(
3
), pp.
232
237
.
36.
Guo
,
X.
, and
Kassab
,
G. S.
, 2003, “
Variation of Mechanical Properties Along the Length of the Aorta in C57bl/6 Mice
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
(
6
), pp.
H2614
H2622
.
37.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.
38.
Driessen
,
N. J.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2005, “
A Structural Constitutive Model for Collagenous Cardiovascular Tissues Incorporating the Angular Fiber Distribution
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
494
503
.
39.
Girard
,
M. J.
,
Suh
,
J. K.
,
Bottlang
,
M.
,
Burgoyne
,
C. F.
, and
Downs
,
J. C.
, 2009, “
Scleral Biomechanics in the Aging Monkey Eye
,”
Invest. Ophthalmol. Vis. Sci.
,
50
(
11
), pp.
5226
5237
.
40.
Mata
,
K. M.
,
Prudente
,
P. S.
,
Rocha
,
F. S.
,
Prado
,
C. M.
,
Floriano
,
E. M.
,
Elias
,
J.
Jr.
,
Rizzi
,
E.
,
Gerlach
,
R. F.
,
Rossi
,
M. A.
, and
Ramos
,
S. G.
, 2011, “
Combining Two Potential Causes of Metalloproteinase Secretion Causes Abdominal Aortic Aneurysms in Rats: A New Experimental Model
,”
Int. J. Exp. Pathol.
,
92
(
1
), pp.
26
39
.
You do not currently have access to this content.