With the resurgence of composite materials in orthopaedic applications, a rigorous assessment of stress is needed to predict any failure of bone-implant systems. For current biomechanics research, strain gage measurements are employed to experimentally validate finite element models, which then characterize stress in the bone and implant. Our preliminary study experimentally validates a relatively new nondestructive testing technique for orthopaedic implants. Lock-in infrared (IR) thermography validated with strain gage measurements was used to investigate the stress and strain patterns in a novel composite hip implant made of carbon fiber reinforced polyamide 12 (CF/PA12). The hip implant was instrumented with strain gages and mechanically tested using average axial cyclic forces of 840 N, 1500 N, and 2100 N with the implant at an adduction angle of 15 deg to simulate the single-legged stance phase of walking gait. Three-dimensional surface stress maps were also obtained using an IR thermography camera. Results showed almost perfect agreement of IR thermography versus strain gage data with a Pearson correlation of R2 = 0.96 and a slope = 1.01 for the line of best fit. IR thermography detected hip implant peak stresses on the inferior-medial side just distal to the neck region of 31.14 MPa (at 840 N), 72.16 MPa (at 1500 N), and 119.86 MPa (at 2100 N). There was strong correlation between IR thermography-measured stresses and force application level at key locations on the implant along the medial (R2 = 0.99) and lateral (R2 = 0.83 to 0.99) surface, as well as at the peak stress point (R2 = 0.81 to 0.97). This is the first study to experimentally validate and demonstrate the use of lock-in IR thermography to obtain three-dimensional stress fields of an orthopaedic device manufactured from a composite material.

References

1.
Cristofoloni
,
L.
, 1997, “
A Critical Analysis of Stress Shielding Evaluation of Hip Prosthesis
,”
Crit. Rev. Biomed. Eng.
,
25
, pp.
409
483
.
2.
Berry
,
D.
,
Harmsen
,
W. S.
,
Cabanela
,
M. E.
,
Morrey
,
B. F.
, 2002, “
Twenty- Five-Year Survivorship of Two Thousand Consecutive Primary Charnley Total Hip Replacements: Factors Affecting Survivorship of Acetabular and Femoral Components
,”
J. Bone Joint Surg. Am.
,
84
, pp.
171
177
.
3.
Akay
,
M
.
, Aslan
N.
, 1996, “
Numerical and Experimental Stress Analysis of a Polymeric Composite Hip Joint Prosthesis
,”
J. Biomed. Mater. Res.
,
31
, pp.
167
182
.
4.
Simões
,
J. A.
,
Marques
,
A. T.
, 2005, “
Design of a Composite Hip Femoral Prosthesis
,”
Mater. Des.
,
26
, pp.
391
401
.
5.
Bougherara
,
H.
,
Bureau
,
M.
,
Campbell
,
M.
,
Vadean
,
A.
,
Yahia
,
L
, 2007, “
Design of a Biomimetic Polymer-Composite Hip Prosthesis
,”
J. Biomed. Mater. Res. Part A
,
82A
, pp.
27
40
.
6.
Bougherara
,
H.
,
Zdero
,
R.
,
Dubov
,
A.
,
Shah
,
S.
,
Khurshid
,
S.
,
Schemitsch
,
E. H.
, 2011, “
A Preliminary Biomechanical Study of a Novel Carbon-Fibre Hip Implant Versus Standard Metallic Hip Implants
,”
Med. Eng. Phys.
,
33
(
1
), pp.
121
128
.
7.
Ramakrishna
,
S.
,
Mayer
,
J.
,
Wintermantel
,
E.
, and
Leong
,
K. W.
, 2001, “
Bio-Medical Applications of Polymer-Composite Materials: A Review
,”
Compos. Sci. Technol.
,
61
, pp.
1189
1224
.
8.
Campbell
,
M.
,
Denault
,
J.
,
Yahia
,
L.
, and
Bureau
,
M. N.
, 2008, “
CF/PA12 Composite Femoral Stems: Manufacturing and Properties
,”
Composites, Part A
,
39
, pp.
796
804
.
9.
Dimitrievska
,
S.
,
Whitfield
,
J.
,
Hacking
,
S. A.
, and
Bureau
,
M. N.
, 2009, “
Novel Carbon Fiber Composite for Hip Replacement with Improved In Vitro and In Vivo Osseointegration
,”
J. Biomed. Mater. Res., Part A
,
91
, pp.
37
51
.
10.
Zdero
,
R.
, and
Bougherara
,
H.
, 2010, “
Orthopaedic Biomechanics: A Practical Approach to Combining Mechanical Testing and Finite Element Analysis
,”
Finite Element Analysis
,
David
Moratal
, ed.,
Intech Education and Publishing
,
Vienna
, Chap. 7.
11.
Zanetti
,
E. M.
,
Musso
,
S. S.
, and
Audenino
,
A. L.
, 2007, “
Thermoelastic Stress Analysis by Means of a Standard Thermocamera
,” Exp. Tech., March-April, pp.
41
50
12.
Hyodo
,
K.
,
Inomoto
,
M.
,
Ma
,
W.
,
Miyakawa
,
S.
, and
Tateishi
T.
, 2001, “
Thermoelastic Stress Imaging for Experimental Evaluation of Hip Prosthesis Design
,”
JSME Int. J., Ser, C
,
44
(
4
), pp.
1065
1071
.
13.
Harwood
,
N.
, and
Cummings
,
W. M.
, (1986), “
Applications of Thermoelastic Stress Analysis
,” Strain, February, pp.
1
.
14.
Fulkerson
,
E.
,
Koval
,
K.
,
Preston
,
C. F.
,
Iesaka
,
K.
,
Kummer
,
F. J.
, and
Egol
,
K. A.
, 2006, “
Fixation of Periprosthetic Femoral Shaft Fractures Associated With Cemented Femoral Stems: A Biomechanical Comparison of Locked Plating and Conventional Cable Plates
,”
J. Orthop. Trauma
20
, pp.
89
93
.
15.
Kuzyk
,
P.
,
Lobo
,
J.
,
Whelan
,
D.
,
Zdero
,
R.
,
McKee
,
M. D.
, and
Schemitsch
,
E. H.
, 2009, “
Biomechanical Evaluation of Extramedullary Versus Intramedullary Fixation for Reverse Obliquity Intertrochanteric Fractures
,”
J. Orthop. Trauma
,
23
(
1
), pp.
31
38
.
16.
Davis
,
E. T.
,
Olsen
,
M.
,
Zdero
,
R.
,
Papini
,
M.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2009, “
A Biomechanical and Finite Element Analysis of Femoral Neck Notching during Hip Resurfacing
,”
J. Biomech. Eng.
,
131
(
4
), pp.
041002
–1–
8
.
17.
Davis
,
E. T.
,
Olsen
,
M.
,
Zdero
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2008, “
Femoral Neck Fracture Following Hip Resurfacing: The Effect of Alignment of the Femoral Component
,”
J. Bone Joint Surg. Br.
,
90
(
11
), pp.
1522
1527
.
18.
Talbot
,
M.
,
Zdero
,
R.
,
Garneau
,
D.
,
Cole
,
P. A.
, and
Schemitsch
,
E. H.
, 2008, “
Fixation of Long Bone Segmental Defects: A Biomechanical Study
,”
Injury
,
39
(
2
), pp.
181
186
.
19.
Talbot
,
M.
,
Zdero
,
R.
, and
Schemitsch
,
E. H.
, 2008, “
Cyclic loading of Periprosthetic Fracture Fixation Constructs
,”
J. Trauma
,
64
(
5
), pp.
1308
1312
.
20.
Zdero
,
R.
,
Walker
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2008, “
Biomechanical Evaluation of Periprosthetic Femoral Fracture Fixation
,”
J. Bone Joint Surg. Am.
,
90
(
5
), pp.
1068
1077
.
21.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
, 1993, “
Hip Joint Loading During Walking and Running, Measure in Two Patients
,”
J. Biomech.
,
26
(
8
), pp.
969
990
.
22.
Bougherara
,
H.
,
Zdero
,
R.
,
Shah
,
S.
,
Miric
,
M.
,
Papini
,
M.
,
Zalzal
,
P.
, and
Schemitsch
,
E. H.
, 2010, “
A Biomechanical Assessment of Modular and Monoblock Revision Hip Implants using FE Analysis and Strain Gage Measurements
,”
J. Orthop. Surg. Res., May 12
,
5
(
1
), pp.
5
34
.
23.
Bougherara
,
H.
,
Zdero
,
R.
,
Miric
,
M.
,
Shah
,
S.
,
Hardisty
,
M.
,
Zalzal
,
P.
, and
Schemitsch
,
E. H.
, 2009, “
The Biomechanics of the T2 Femoral Nailing System: A Comparison of Synthetic Femurs With Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
223
(
H3
), pp.
303
314
.
24.
Cheung
,
G.
,
Zalzal
,
P.
,
Bhandari
,
M.
,
Spelt
,
J. K.
, and
Papini
,
M
, 2004, “
Finite Element Analysis of a Femoral Retrograde Intramedullary Nail Subject to Gait Loading
,”
Med. Eng. Phys.
,
26
(
2
), pp.
93
108
.
25.
Bougherara
,
H.
,
Zdero
,
R.
,
Mahboob
,
Z.
,
Dubov
,
A.
,
Shah
,
S.
, and
Schemitsch
,
E. H.
, 2010, “
The Biomechanics of a Validated Finite Element Model of Stress Shielding in a Novel Hybrid Total Knee Replacement
,”
Proc. Inst. Mech. Eng., Part H: J Eng. Med.
,
224
(
H10
), pp.
1209
1219
.
26.
Helgason
,
B.
,
Pálsson
,
H.
,
Rúnarsson
,
T. P.
,
Frossard
,
L.
, and
Viceconti
M.
, 2009, “
Risk of Failure During Gait for Direct Skeletal Attachment of a Femoral Prosthesis: A Finite Element Study
,”
Med. Eng. Phys.
,
31
, pp.
595
600
.
27.
McConnell
,
A.
,
Zdero
,
R.
,
Syed
,
K.
,
Peskun
,
C.
, and
Schemitsch
,
E. H.
, 2008, “
The Biomechanics of Ipsilateral Intertrochanteric and Femoral Shaft Fractures: A Comparison of 5 Fracture Fixation Techniques
,”
J. Orthop. Trauma
,
22
(
8
), pp.
517
524
.
28.
Paul
,
J. P.
, 1999, “
Strength Requirements for Internal and External Prostheses
,”
J. Biomech.
,
32
, pp.
381
393
.
You do not currently have access to this content.