A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood’s lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.

References

References
1.
Marossy
,
A.
,
Svorc
,
P.
,
Kron
,
I.
, and
Gresov
,
S.
, 2009, “
Hemorheology and Circulation
,”
Clin. Hemorheol. Microcirc.
,
42
, pp.
239
258.
2.
Pohl
,
M.
,
Wendt
,
M. O.
,
Werner
,
S.
,
Koch
,
B.
, and
Lerche
,
D.
, 1996, “
In Vitro Testing of Artificial Heart Valves: Comparison Between Newtonian and Non-Newtonian Fluids
,”
Artif Organs
,
20
, pp.
37
46.
3.
Chandran
,
K.
,
Yoganathan
,
A.
, and
Rittgers
,
S.
, 2007,
Biofluid Mechanics: The Human Circulation
,
Taylor and Francis
,
Boca Raton, FL
.
4.
Chien
,
S.
,
Usami
,
S.
,
Dellenback
,
R.
, and
Gregersen
,
M.
, 1970, “
Shear-Dependent Deformation of Erythro-Cytes in Rheology of Human Blood
,”
Am. J. Physiol.
,
219
, pp.
136
142.
5.
Carlier
,
S. G.
,
van Damme
,
L. C. A.
,
Blommerde
,
C. P.
,
Wentzel
,
J. J.
,
van Langehove
,
G.
,
Verheye
,
S.
,
Kockx
,
M. M.
,
Knaapen
,
M. W. M.
,
Cheng
,
C.
,
Gijsen
,
F.
,
Duncker
,
D. J.
,
Stergiopulos
,
N.
,
Slager
,
C. J.
,
Serruys
,
P. W.
, and
Krams
,
R.
, 2003, “
Augmentation of Wall Shear Stress Inhibits Neointimal Hyperplasia After Stent Implantation: Inhibition Through Reduction of Inflammation?
Circulation
,
107
, pp.
2741
2746.
6.
Benard
,
N.
,
Coisne
,
D.
,
Donal
,
E.
, and
Perrault
,
R.
, 2003, “
Experimental Study of Laminar Blood Flow Through an Artery Treated by a Stent Implantation: Characterisation of Intra-Stent Wall Shear Stress
,”
J. Biomech.
36
, pp.
991
998.
7.
LaDisa
,
J. F. J.
,
Guler
,
I.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2003, “
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
,”
Ann. Biomed. Eng.
,
31
, pp.
972
980.
8.
LaDisa
,
J. F. J.
,
Olson
,
L. E.
,
Guler
,
I.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2005, “
Circumferential Vascular Deformation After Stent Implantation Alters Wall Shear Stress Evaluated Using Time-Dependent 3d Computational Fluid Dynamics Models
,”
J. Appl. Physiol.
,
98
, pp.
947
957.
9.
Duraiswamy
,
N.
,
Schoephoerster
,
R. T.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
, 2007, “
Stented Artery Flow Patterns and Their Effects on the Artery Wall
,”
Annu. Rev. Fluid Mech.
,
39
, pp.
357
382.
10.
Friedman
,
M. H.
,
Bargeron
,
C. B.
,
Duncan
,
D. D.
,
Hutchins
,
G. M.
, and
Mark
,
F. F.
, 1992, “
Effects of Arterial Compliance and Non-Newtonian Rheology on Correlations Between Intimal Thickness and Wall Shear
,”
J. Biomech. Eng.
,
114
, pp.
317
320.
11.
Chien
,
S.
,
Usami
,
S.
,
Taylor
,
H. M.
,
Lundberg
,
J. L.
, and
Gregersen
,
M. I.
, 1966, “
Effects of Hematocrit and Plasma Proteins on Human Blood Rheology at Low Shear Rates
,”
J. Appl. Physiol.
,
21
, pp.
81
87.
12.
Mejia
,
J.
,
Mongrain
,
R.
,
Ruzzeh
,
B.
,
Leask
,
R.
, and
Bertrand
,
O. F.
, 2009, “
Evaluation of the Effect of Stent Strut Profile on Shear Stress Distribution Using Statistical Moments
,”
Biomed. Eng.
Online,
8
, p.
8
.
13.
Mejia
,
J.
,
Mongrain
,
R.
,
Leask
,
R.
, and
Bertrand
,
O. F.
, 2009, “
Non-Newtonian and Transient Effects on Wall Shear Stress Within a Stented Artery
,”
J. Biol. Phys. Chem.
,
9
, pp.
177
182.
14.
Benard
,
N.
,
Perrault
,
R.
, and
Coisne
,
D.
, 2006, “
Computational Approach to Estimating the Effects of Blood Properties on Changes in Intra-Stent Flow
,”
Ann. Biomed. Eng.
,
34
, pp.
1259
1271.
15.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and its Role in Atherosclerosis
,”
JAMA
,
282
, pp.
2035
2042.
16.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Atheroma and Arterial Wall Shear Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London. Ser. B
,
177
, pp.
109
133.
17.
Ojha
,
M.
, 1993, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-side Arterial Anasto-Mosis Model
,”
J. Biomech.
,
26
, pp.
1377
1388.
18.
Gijsen
,
F. J.
,
Oortman
,
R. M.
,
Wentzel
,
J. J.
,
Schuurbiers
,
J. C.
,
Tanabe
,
K.
,
Degertekin
,
M.
,
Ligthart
,
J. M.
,
Thury
,
A.
,
de Feyter
,
P. J.
,
Serruys
,
P. W.
, and
Slager
,
C. J.
, 2003, “
Usefulness of Shear Stress Pattern in Predicting Neointima Distribution in Sirolimus-Eluting Stents in Coronary Arteries
,”
Am. J. Cardiol.
,
92
, pp.
1325
1328.
19.
Pijls
,
N. H.
,
Klauss
,
V.
,
Siebert
,
U.
,
Powers
,
E.
,
Takazawa
,
K.
,
Fearon
,
W. F.
,
Escaned
,
J.
,
Tsurumi
,
Y.
,
Akasaka
,
T.
,
Samady
,
H.
, and
De Bruyne
,
B.
, 2002, “
Coronary Pressure Measurement After Stenting Predicts Adverse Events at Follow-up: A Multicenter Registry
,”
Circulation
,
105
, pp.
2950
2954.
You do not currently have access to this content.