The lack of standardization in experimental protocols for unconfined compression tests of intervertebral discs (IVD) tissues is a major issue in the quantification of their mechanical properties. Our hypothesis is that the experimental protocols influence the mechanical properties of both annulus fibrosus and nucleus pulposus. IVD extracted from bovine tails were tested in unconfined compression stress-relaxation experiments according to six different protocols, where for each protocol, the initial swelling of the samples and the applied preload were different. The Young’s modulus was calculated from a viscoelastic model, and the permeability from a linear biphasic poroviscoelastic model. Important differences were observed in the prediction of the mechanical properties of the IVD according to the initial experimental conditions, in agreement with our hypothesis. The protocol including an initial swelling, a 5% strain preload, and a 5% strain ramp is the most relevant protocol to test the annulus fibrosus in unconfined compression, and provides a permeability of 5.0 ± 4.2e−14m4/N·s and a Young’s modulus of 7.6 ± 4.7 kPa. The protocol with semi confined swelling and a 5% strain ramp is the most relevant protocol for the nucleus pulposus and provides a permeability of 10.7 ± 3.1 e−14m4/N·s and a Young’s modulus of 6.0 ± 2.5 kPa.

References

1.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H.-J.
, and
Bergmann
,
G.
, 2006,
“Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method,”
J. Biomech.
,
39
(
13
), pp.
2484
2490
.
2.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1998,
“Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression,”
J. Biomech.
,
31
(
6
), pp.
535
544
.
3.
Urban
,
J. P.
, and
Roberts
,
S.
, 2003,
“Degeneration of the Intervertebral Disc,”
Arthritis Res. Ther.
,
5
(
3
), pp.
120
130
.
4.
Ghosh
,
P.
, 1988,
The Biology of the Intervertebral Disc
,
CRC Press
,
Boca Raton, FL
.
5.
Galante
,
J. O.
, 1967,
“Tensile Properties of the Human Lumbar Anulus Fibrosus,”
Acta Orthop. Scand.
,
100
, pp.
4
91
.
6.
Urban
,
J. P.
, and
McMullin
,
J. F.
, 1988,
“Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration,” Spine
,
13
(
2
), pp.
179
187
.
7.
Perie
,
D.
,
Korda
,
D.
, and
Iatridis
,
J. C.
, 2005, “
Confined Compression Experiments on Bovine Nucleus Pulposus and Annulus Fibrosus: Sensitivity of the Experiment in the Determination of Compressive Modulus and Hydraulic Permeability
,”
J. Biomech.
,
38
(
11
), pp.
2164
2171
.
8.
Nguyen
,
M.
,
Johannessen
,
W.
,
Yoder
,
J. H.
,
Wheaton
,
A. J.
,
Vresilovic
,
E. J.
,
Borthakur
,
A.
, and
Elliott
,
D. M.
, 2008,
“Noninvasive Quantification of Human Nucleus Pulposus Pressure with Use of T1ρ-Weighted Magnetic Resonance Imaging,”
J. Bone Joint Surg.
,
90
, pp.
796
802
.
9.
Mwale
,
F.
,
Demers
,
C. N.
,
Michalek
,
A. J.
,
Beaudoin
,
G.
,
Goswami
,
T.
,
Beckman
,
L.
,
Iatridis
,
J. C.
, and
Antoniou
,
J.
, 2008,
“Evaluation of Quantitative Magnetic Resonance Imaging, Biochemical and Mechanical Properties of Trypsin–Treated Intervertebral Discs Under Physiological Compression Loading,”
J. Magn. Reson. Imag.
,
27
(
3
), pp.
563
573
.
10.
Yao
,
H.
,
Justiz
,
M. A.
,
Flagler
,
D.
, and
Gu
,
W. Y.
, 2002,
“Effects of Swelling Pressure and Hydraulic Permeability on Dynamic Compressive Behavior of Lumbar Annulus Fibrosus,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1234
1241
.
11.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
van Donkelaar
,
C. C.
, 2006,
“A Composition-Based Cartilage Model for the Assessment of Compositional Changes During Cartilage Damage and Adaptation,”
Osteoarthritis Cartilage
,
14
(
6
), pp.
554
560
.
12.
Julkunen
,
P.
,
Wilson
,
W.
,
Jurvelin
,
J. S.
,
Rieppo
,
J.
,
Qu
,
C. J.
,
Lammi
,
M. J.
, and
Korhonen
,
R. K.
, 2008,
“Stress-Relaxation of Human Patellar Articular Cartilage in Unconfined Compression: Prediction of Mechanical Response by Tissue Composition and Structure,”
J. Biomech.
,
41
(
9
), pp.
1978
1986
.
13.
DiSilvestro
,
M. R.
, and
Suh
,
J. K.
, 2002,
“Biphasic Poroviscoelastic Characteristics of Proteoglycan-Depleted Articular Cartilage: Simulation of Degeneration,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
792
800
.
14.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2003,
“Strain-Rate Dependent Stiffness of Articular Cartilage in Unconfined Compression,”
J. Biomech. Eng.
,
125
(
2
), pp.
161
168
.
15.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Toyras
,
J.
,
Rieppo
,
J.
,
Hirvonen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2002,
“Comparison of the Equilibrium Response of Articular Cartilage in Unconfined Compression, Confined Compression and Indentation,”
J. Biomech.
,
35
(
7
), pp.
903
909
.
16.
Allen
,
K. D.
, and
Athanasiou
,
K. A.
, 2006,
“Viscoelastic Characterization of the Porcine Temporomandibular Joint Disc Under Unconfined Compression,”
J. Biomech.
,
39
(
2
), pp.
312
322
.
17.
Klisch
,
S. M.
, and
Lotz
,
J. C.
, 2000,
“A Special Theory of Biphasic Mixtures and Experimental Results for Human Annulus Fibrosus Tested in Confined Compression,”
J. Biomech. Eng.
,
122
(
2
), pp.
180
188
.
18.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W.
,
Saed-Nejad
,
F.
,
Ratcliffe
,
A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1994,
“Compressive Mechanical Properties of the Human Anulus Fibrosus and Their Relationship to Biochemical Composition,”
Spine
,
19
(
2
), pp.
212
221
.
19.
Suh
,
J. K.
, and
Disilvestro
,
M. R.
, 1999,
“Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue,”
ASME J. Appl. Mech.
,
66
(
2
), pp.
528
535
.
20.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
J. K. F.
, 2001,
“Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II—Effect of Variable Strain Rates,”
J. Biomech. Eng.
,
123
(
2
), pp.
198
200
.
21.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J. K. F.
, 2001,
“Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage. I. Simultaneous Prediction of Reaction Force and Lateral Displacement,”
J. Biomech. Eng.
,
123
(
2
), pp.
191
197
.
22.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980,
“Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
23.
Biot
,
M. A.
, 1962,
“Mechanics of Deformation and Acoustic Propagation in Porous Media,”
J. Appl. Phys.
,
33
(
4
), pp.
1482
1498
.
24.
Périe
,
D
.,
Iatridis
,
J. C.
,
Demers
,
C. N.
,
Goswami
,
T.
,
Beaudoin
,
G.
,
Mwale
,
F.
, and
Antoniou
,
J.
, 2006,
“Assessment of Compressive Modulus, Hydraulic Permeability and Matrix Content of Trypsin-Treated Nucleus Pulposus Using Quantitative MRI,”
J. Biomech.
,
39
(
8
), pp.
1392
1400
.
25.
Cloyd
,
J. M.
,
Malhotra
,
N. R.
,
Weng
,
L.
,
Chen
,
W.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
“Material Properties in Unconfined Compression of Human Nucleus Pulposus, Injectable Hyaluronic Acid-Based Hydrogels and Tissue Engineering Scaffolds,”
Eur. Spine J.
,
16
(
11
), pp.
1892
1898
.
26.
Jesse
,
C.
,
Beckstein
,
M.
,
B.
Sounok Sen
, and
Schaer
,
T. P.
, 2008,
“Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc,”
Spine
33
(
6
), pp.
E166
E173
.
You do not currently have access to this content.