Cerebral aneurysms constitute a major medical challenge as treatment options are limited and often associated with high risks. Statistically, up to 3% of patients with a brain aneurysm may suffer from bleeding for each year of life. Eight percent of all strokes are caused by ruptured aneurysms. In order to prevent this rupture, endovascular stenting using so called flow diverters is increasingly being regarded as an alternative to the established coil occlusion method in minimally invasive treatment. Covering the neck of an aneurysm with a flow diverter has the potential to alter the hemodynamics in such a way as to induce thrombosis within the aneurysm sac, stopping its further growth, preventing its rupture and possibly leading to complete resorption. In the present study the influence of different flow diverters is quantified considering idealized patient configurations, with a spherical sidewall aneurysm placed on either a straight or a curved parent vessel. All important hemodynamic parameters (exchange flow rate, velocity, and wall shear stress) are determined in a quantitative and accurate manner using computational fluid dynamics when varying the key geometrical properties of the aneurysm. All simulations are carried out using an incompressible, Newtonian fluid with steady conditions. As a whole, 72 different cases have been considered in this systematic study. In this manner, it becomes possible to compare the efficiency of different stents and flow diverters as a function of wire density and thickness. The results show that the intra-aneurysmal flow velocity, wall shear stress, mean velocity, and vortex topology can be considerably modified thanks to insertion of a suitable implant. Intra-aneurysmal residence time is found to increase rapidly with decreasing stent porosity. Of the three different implants considered in this study, the one with the highest wire density shows the highest increase of intra-aneurysmal residence time for both the straight and the curved parent vessels. The best hemodynamic modifications are always obtained for a small aneurysm diameter.

References

References
1.
Kaminogo
,
M.
,
Yonekura
,
M.
, and
Shibata
,
S.
, 2003, “
Incidence and Outcome of Multiple Intracranial Aneurysms in a Defined Population
,”
Stroke
,
34
, pp.
16
21
.
2.
Yu
,
S. C. M.
, and
Zhao
,
J. B.
, 1999, “
A Steady Flow Analysis on the Stented and Non-Stented Sidewall Aneurysm Models
,”
Med. Eng. Phys.
,
21
, pp.
133
141
.
3.
de Oliveira
,
J. G.
,
Beck
,
J.
, and
Ulrich
,
C.
, 2007, “
Comparison Between Clipping and Coiling on the Incidence of Cerebral Vasospasm After Aneurismal Subarachnoid Hemorrhage: A Systematic Review and Metaanalysis
,”
Neurosurg. Rev.
,
30
, pp.
22
31
.
4.
Carter
,
B. S.
,
Buckley
,
D.
, and
Rordorf
,
G.
, 2000, “
Factors Associated With Reintegration to Normal Living After Subarachnoid Hemorrhage
,”
Neurosurgery
,
46
, pp.
1326
1333
.
5.
Sadasivan
,
C.
,
Lieber
,
B.
,
Gounis
,
M.
,
Lopes
,
D.
, and
Hopkins
,
L. N.
, 2002, “
Angiographic Quantification of Contrast Medium Washout From Cerebral Aneurysms After Stent Olacement
,”
Am. J. Neuroradiol.
,
23
, pp.
1214
1221
.
6.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Burgess
,
J. E.
,
Pergolizzia
,
R. S.
,
Sheridan
,
M. J.
, and
Putman
,
C. M.
, 2005, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models
,”
Am. J. Neuroradiol.
,
26
, pp.
2550
2559
.
7.
Tateshima
,
S.
,
Chien
,
A.
,
Sayre
,
J.
,
Cebral
,
J.
, and
Viñuela
,
F.
, 2010, “
The Effect of Aneurysm Geometry on the Intra-Aneurysmal Flow Condition
,”
Neuroradiology
,
52
, pp.
1135
1142
.
8.
Steiger
,
H. J.
,
Aaslid
,
R.
,
Keller
,
S.
, and
Reulen
,
H.
, 1989, “
Strength, Elasticity and Viscoelastic Properties of Cerebral Aneurysms
,”
Heart Vessels
,
5
, pp.
41
46
.
9.
Gonzalez
,
C. F.
,
Cho
,
Y. I.
,
Ortega
,
H. V.
, and
Moret
,
J.
, 1992, “
Intracranial Aneurysms: Flow Analysis of Their Origin and Progression
,”
Am. J. Neuroradiol.
,
13
, pp.
181
188
.
10.
Parlea
,
L.
,
Fahrig
,
R.
,
Holdsworth
,
D. W.
, and
Lownie
,
S. P.
, 1999, “
An Analysis of the Geometry of Saccular Intracranial Aneurysms
,”
Am. J. Neuroradiol.
,
20
, pp.
1079
1089
.
11.
Ujiie
,
H.
,
Tamano
,
Y.
,
Sasaki
,
K.
, and
Hori
,
T.
, 2001, “
Is the Aspect Ratio a Reliable Index for Predicting the Rupture of a Saccular Aneurysm?
Neurosurgery
,
48
, pp.
495
503
.
12.
Janiga
,
G.
,
Beuing
,
O.
,
Seshadhri
,
S.
,
Neugebauer
,
M.
,
Gasteiger
,
R.
,
Preim
,
B.
,
Rose
,
G.
,
Skalej
,
M.
, and
Thevenin
,
D.
, 2009, “
Virtual Stenting Using Real Patients Data
,”
14th International Conference on Fluid Flow Technologies
, Budapest, Hungary, Sept. 9-12, pp.
111
17
.
13.
Janiga
,
G.
,
Seshadhri
,
S.
,
Beuing
,
O.
,
Neugebauer
,
M.
,
Gasteiger
,
R.
,
Preim
,
B.
,
Rose
,
G.
,
Skalej
,
M.
, and
Thevenin
,
D.
, 2011, “
Guidelines for Accurate Numerical Flow Simulations of Stented Cerebral Aneurysms: A VISC09 Case
,”
Neuroradiology
(submitted).
14.
Casey
,
M.
, and
Wintergerste
,
T.
, 2000, Quality and Trust in Industrial CFD: Best Practice Guidelines, ERCOFTAC, www.ercoftac.orgwww.ercoftac.org.
15.
Barakat
,
A.
, and
Cheng
,
E.
, 2000, “
Numerical Simulation of Fluid Mechanical Disturbance Induced by Intravascular Stents
,”
International Conference on Mechanics in Medicine and Biology ICMMB-11
, Maui, Hawaii, April 2-5.
16.
Perktold
,
K.
,
Kenner
,
T.
,
Hilbert
,
D.
,
Spork
,
B.
, and
Florian
,
H.
, 1988. “
Numerical Blood Flow Analysis: Arterial Bifurcation With a Saccular Aneurysm
,”
Basic Res. Cardiol.
,
83
, pp.
24
31
.
17.
Ottesen
,
J. L.
,
Olufsen
,
M. S.
, and
Larsen
,
J. K.
, 2004, “
Applied Mathematical Models in Human Physiology
,” SIAM Monograph on Mathematical Modeling and Computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia.
18.
Steiger
,
H. J.
,
Perktold
,
K.
, and
Turitto
,
V T.
, 1997, “
Computer Modeling of Intracranial Saccular and Lateral Aneurysms for the Study of Their Hemodynamics
,”
Neurosurgery
,
41
, pp.
326
327
.
19.
Scott
,
S.
,
Ferguson
,
G.
, and
Roach
,
M.
, 1972, “
Comparison of the Elastic Properties of Human Intracranial Arteries and Aneurysms
,”
Can. J. Physiol. Pharmacol.
,
50
, pp.
328
332
.
20.
Kim
,
M.
,
Levy
,
E. L.
,
Meng
,
H.
, and
Hopkins
,
L. N.
, 2007, “
Quantification of Hemodynamic Changes Induced by Virtual Placement of Multiple Stents Across a Wide Necked Basilar Trunk Aneurysm
,”
Neurosurgery
,
61
, pp.
1305
1313
.
21.
Seshadhri
,
S.
,
Janiga
,
G.
,
Preim
,
B.
,
Rose
,
G.
,
Skalej
,
M.
, and
Thevenin
,
D.
, 2008, “
Numerical Simulation and Experimental Validation in an Exact Aortic Arch Aneurysm Model
,”
Fourth European Conference of the International Federation for Medical and Biological Engineering
,
Antwerp
,
Belgium
,
Springer
,
New York
, Vol.
22
, pp.
1975
1979
.
22.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
Morita
,
A.
, and
Kirino
,
T.
, 2004, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms
,”
Stroke
,
35
, pp.
2500
2505
.
23.
Kim
,
M.
,
Talubee
,
D. B.
,
Tremmel
,
M.
, and
Meng
,
H.
, 2008, “
Comparison of Two Stents in Modifying Cerebral Aneurysm Hemodynamics
,”
Ann. Biomed. Eng.
,
36
, pp.
726
741
.
24.
Meng
,
H.
,
Wang
,
Z.
,
Kim
,
M.
,
Ecker
,
R.
, and
Hopkins
,
L.
, 2006, “
Saccular Aneurysms on Straight and Curved Vessels are Subject to Different Hemodynamics: Implications of Intravascular Stenting
,”
Am. J. Neuroradiol.
,
27
, pp.
1861
1865
.
25.
Aenis
,
M.
,
Stancampiano
,
A.
,
Wakhloo
,
A.
, and
Lieber
,
B.
, 1997, “
Modeling of Flow in a Straight Stented and Nonstented Side Wall Aneurysm Model
,”
J. Biomech. Eng.
,
119
, pp.
206
212
.
26.
Lieber
,
B. B.
,
Aenis
,
M.
,
Zhao
,
Y.
, and
Wakhloo
,
A. K.
, 1995. “
Flow Characteristics in a Stented and Non-Stented Side Wall Aneurysm Model
,”
Am. Soc. Mech. Eng., Bioeng. Div.
,
31
, pp.
379
380
.
27.
Geremia
,
G.
,
Brack
,
T.
,
Brennecke
,
L.
,
Haklin
,
M.
, and
Falter
,
R.
, 2000, “
Occlusion of Experimentally Created Fusiform Aneurysms With Porous Metallic Stents
,”
Am. J. Neuroradiol.
,
21
, pp.
739
745
.
28.
Benndorf
,
G.
,
Herban
,
U.
,
Sollmann
,
W.
, and
Campi
,
A.
, 2001, “
Treatment of a Ruptured Dissecting Vertebral Artery Aneurysm With Double Stent Placement: Case Report
,”
Am. J. Neuroradiol.
,
22
, pp.
1844
1848
.
29.
Lieber
,
B. B.
,
Livescu
,
V.
,
Hopkins
,
L. N.
, and
Wakhloo
,
A. K.
, 2002, “
Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow
,”
Ann. Biomed. Eng.
,
30
, pp.
768
777
.
30.
Ohta
,
M.
,
Hirabayashi
,
M.
, and
Wetzel
,
S.
, 2004, “
Impact of Stent Design on Intra-Aneurysmal Flow
,”
Intervent. Neuroradiol.
,
10
, pp.
85
94
.
31.
Palmaz
,
J. C.
, 1993, “
Intravascular Stent: Tissue-Stent Interactions and Design Considerations
,”
Am. J. Roentgenol.
,
160
, pp.
613
618
.
32.
Wakhloo
,
A. K.
,
Tio
,
F. O.
,
Lieber
,
B. B.
,
Schellhammer
,
F.
,
Graf
,
M.
, and
Hopkins
,
L. N.
, 1995, “
Self Expanding Nitinol Stents in Canine Vertebral Arteries: Hemodynamics and Tissue Response
,”
Am. J. Neuroradiol.
,
16
, pp.
1043
1051
.
33.
Liou
,
T. M.
,
Chang
,
W. C.
, and
Liao
,
C. C.
, 1997, “
Experimental Study of Steady and Pulsatile Flows in Cerebral Aneurysm Model of Various Sizes at Branching Site
,”
J. Biomech. Eng.
,
119
, pp.
325
332
.
34.
Kassell
,
N. F.
, and
Torner
,
J. C.
, 1983, “
Size of Intracranial Aneurysms
,”
Neurosurgery
,
12
, pp.
291
297
.
35.
Weir
,
B.
, 2002, “
Unruptured Intracranial Aneurysms: A Review
,”
J. Neurosurg.
,
96
, pp.
3
42
.
You do not currently have access to this content.