The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint’s local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local pressure values for the cervical joint in a cadaveric model.

References

References
1.
Panjabi
,
M. M.
,
Simpson
,
A. K.
,
Ivancic
,
P. C.
,
Pearson
,
A. M.
,
Tominaga
,
Y.
, and
Yue
,
J. J.
, 2007, “
Cervical Facet Joint Kinematics During Bilateral Facet Dislocation
,”
Eur. Spine J.
,
16
, pp.
1680
1688
.
2.
Winkelstein
,
B. A.
,
Nightingale
,
R. W.
,
Richardson
,
W. J.
, and
Myers
,
B. S.
, 2000, “
The Cervical Facet Capsule and its Role in Whiplash Injury: A Biomechanical Investigation
,”
Spine
,
25
, pp.
1238
1246
.
3.
Shanmuganathan
,
K.
,
Mirvis
,
S. E.
, and
Levine
,
A.M.
, 1994, “
Rotational Injury of Cervical Facets: CT Analysis of Fracture Patterns With Implications for Management and Neurologic Outcome
,”
Am. J. Roentgenol.
,
163
, pp.
1165
1169
.
4.
Dvorak
,
M. F.
,
Fisher
,
C. G.
,
Fehlings
,
M. G.
,
Rampersaud
,
Y. R.
,
Oner
,
F. C.
,
Aarabi
,
B.
, and
Vaccaro
,
A. R.
, 2007, “
The Surgical Approach to Subaxial Cervical Spine Injuries: An Evidence-Based Algorithm Based on the SLIC Classification System
,”
Spine
,
32
, pp.
2620
2629
.
5.
Pearson
,
A. M.
,
Ivancic
,
P. C.
,
Ito
,
S.
, and
Panjabi
,
M. M.
, 2004, “
Facet Joint Kinematics and Injury Mechanisms During Simulated Whiplash
,”
Spine
,
29
, pp.
390
397
.
6.
Stemper
,
B. D.
,
Yoganandan
,
N.
,
Gennarelli
,
T. A.
, and
Pintar
,
F. A.
, 2005, “
Localized Cervical Facet Joint Kinematics Under Physiological and Whiplash Loading
,”
J. Neurosurg. Spine
,
3
, pp.
471
476
.
7.
Ivancic
,
P. C.
,
Ito
,
S.
,
Tominaga
,
Y.
,
Rubin
,
W.
,
Coe
,
M. P.
,
Ndu
,
A. B.
,
Carlson
,
E. J.
, and
Panjabi
,
M. M.
, 2008, “
Whiplash Causes Increased Laxity of Cervical Capsular Ligament
,”
Clin. Biomech.
23
, pp.
159
165
.
8.
Raynor
,
R. B.
,
Pugh
,
J.
, and
Shapiro
,
I.
, 1985, “
Cervical Facetectomy and its Effect on Spine Strength
,”
J. Neurosurg.
,
63
, pp.
278
82
.
9.
Zdeblick
,
T. A.
,
Abitbol
,
J. J.
,
Kunz
,
D. N.
,
McCabe
,
R. P.
, and
Garfin
,
S.
, 1993, “
Cervical Stability After Sequential Capsule Resection
,”
Spine
,
18
, pp.
2005
2008
.
10.
Bogduk
,
N.
, and
Marsland
,
A.
, 1988, “
The Cervical Zygapophysial Joints as a Source of Neck Pain
,”
Spine
,
13
, pp.
610
617
.
11.
Dreyer
,
S. J.
, and
Dreyfuss
,
P. H.
, 1996, “
Low Back Pain and the Zygapophysial (Facet) Joints
,”
Arch. Phys. Med. Rehabil.
,
77
, pp.
290
300
.
12.
Cavanaugh
,
J. M.
,
Lu
,
Y.
,
Chen
,
C.
, and
Kallakuri
,
S.
, 2006, “
Pain Generation in Lumbar and Cervical Facet Joints
,”
J. Bone Joint Surg. Am.
,
88
(
2
), pp.
63
67
.
13.
Chang
,
U. K.
,
Kim
,
D. H.
,
Lee
,
M. C.
,
Willenberg
,
R.
,
Kim
,
S. H.
, and
Lim
,
J.
, 2007, “
Changes in Adjacent-Level DiscPressure and Facet Joint Force After Cervical Arthroplasty Compared With Cervical Discectomy and Fusion
,”
J. Neurosurg. Spine
,
7
, pp.
33
39
.
14.
Rousseau
,
M. A.
,
Bradford
,
D. S.
,
Bertagnoli
,
R.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
, 2006, “
Disc Arthroplasty Design Influences Intervertebral Kinematics and Facet Forces
,”
Spine J.
,
6
, pp.
258
266
.
15.
Rundell
,
S. A.
,
Auerbach
,
J. D.
,
Balderston
,
R. A.
, and
Kurtz
,
S. M.
, 2008, “
Total Disc Replacement Positioning Affects Facet Contact Forces and Vertebral Body Strains
,”
Spine
,
33
, pp.
2510
2417
.
16.
Schmidt
,
H.
,
Midderhoff
,
S.
,
Adkins
,
K.
, and
Wilke
,
H. J.
, 2009, “
The Effect of Different Design Concepts in Lumbar Total Disc Arthroplasty on the Range of Motion, Facet Joint Forces and Instantaneous Center of Rotation of a L4-5 Segment
,”
Eur. Spine J.
,
18
, pp.
1695
1705
.
17.
Luan
,
F.
,
Yang
,
K. H.
,
Deng
,
B.
,
Begeman
,
P. C.
,
Tashman
,
S.
, and
King
,
A. I.
, 2000, “
Qualitative Analysis of Neck Kinematics During Low-Speed Rear-End Impact
,”
Clin. Biomech.
,
15
, pp.
649
657
.
18.
Jaumard
,
N. V.
,
Bauman
,
J. A.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
, 2011, “
Pressure Measurement in the Cervical Spinal Facet Joint: Considerations for Maintaining Joint Anatomy and an Intact Capsule
,”
Spine
,
36
, pp.
1197
1203
.
19.
Siegmund
,
G. P.
,
Davis
,
M. B.
,
Quinn
,
K. P.
,
Hines
,
E.
,
Myers
,
B. S.
,
Ejima
,
S.
,
Ono
,
K.
,
Kamiji
,
K.
,
Yasuki
,
T.
, and
Winkelstein
,
B. A.
, 2008, “
Head-Turned Postures Increase the Risk of Cervical Facet Capsule Injury During Whiplash
,”
Spine
,
33
, pp.
1643
1649
.
20.
Pal
,
G. P.
, and
Sherk
,
H. H.
, 1988, “
The Vertical Stability of the Cervical Spine
,”
Spine
,
13
, pp.
447
449
.
21.
Pal
,
G. P.
, and
Routal
,
R. V.
, 1986, “
A Study of Weight Transmission Through the Cervical and Upper Thoracic Regions of the Vertebral Column in Man
,”
J. Anat.
,
148
, pp.
245
261
.
22.
Buttermann
,
G. R.
,
Kahmann
,
R. D.
,
Lewis
,
J. L.
, and
Bradford
,
D. S.
, 1991, “
An Experimental Method for Measuring Force on the Spinal Facet Joint: Description and Application of the Method
,”
J. Biomech. Eng.
,
113
, pp.
375
386
.
23.
Sawa
,
A. G.
, and
Crawford
,
N. R.
, 2008, “
The Use of Surface Strain Data and a Neural Networks Solution Method to Determine Lumbar Facet Joint Loads During in Vitro Spine Testing
,”
J. Biomech.
,
41
, pp.
2647
2653
.
24.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
, 1998, “
Finite Element Modeling Approaches of Human Cervical Spine Facet Joint Capsule
,”
J. Biomech.
,
31
, pp.
371
376
.
25.
Kang
,
H.
,
Park
,
P.
,
La Marca
,
F.
,
Hollister
,
S. J.
, and
Lin
,
C. Y.
, 2010, “
Analysis of Load Sharing on Uncovertebral and Facet Joints at the C5-6 Level with Implantation of the Bryan, Prestige LP, or ProDisc-C Cervical Disc Prosthesis: An in Vivo Image-Based Finite Element Study
,”
Neurosurg. Focus
,
28
(
6
), pp.
E9
.
26.
Panzer
,
M. B.
, and
Cronin
,
D. S.
, 2009, “
C4-C5 Segment Finite Element Model Development, Validation, and Load-Sharing Investigation
,”
J. Biomech.
,
42
, pp.
480
490
.
27.
Liu
,
F.
,
Cheng
,
J. S.
,
Komistek
,
R. D.
, and
Mahfouz
,
M. R.
, 2008, “
Normal, Fused, and Degenerative Cervical Spines: A Comparative Study of Three-Dimensional in Vivo Kinetics
,”
J. Bone Joint Surg. Am.
,
90
(
4
), pp.
85
89
.
28.
Wiseman
,
C. M.
,
Lindsey
,
D. P.
,
Fredrick
,
A. D.
, and
Yerby
,
S. A.
, 2005, “
The Effect of an Interspinous Process Implant on Facet Loading During Extension
,”
Spine
,
30
, pp.
903
907
.
29.
Niosi
,
C. A.
,
Wilson
,
D. C.
,
Zhu
,
Q.
,
Keynan
,
O.
,
Wilson
,
D. R.
, and
Oxland
,
T. R.
, 2008, “
The Effect of Dynamic Posterior Stabilization on Facet Joint Contact Forces: an in Vitro Investigation
,”
Spine
,
33
, pp.
19
26
.
30.
Wilson
,
D. C.
,
Niosi
,
C. A.
,
Zhu
,
Q. A.
,
Oxland
,
T. R.
, and
Wilson
,
D. R.
, 2006, “
Accuracy and Repeatability of a New Method for Measuring Facet Loads in the Lumbar Spine
,”
J. Biomech.
,
39
, pp.
348
353
.
31.
Oxland
,
T. R.
,
Panjabi
,
M. M.
,
Southern
,
E. P.
, and
Duranceau
,
J. S.
, 1991, “
An Anatomic Basis for Spinal Instability: A Porcine Trauma Model
,”
J. Orthop. Res.
,
9
, pp.
452
462
.
32.
Liau
,
J. J.
,
Hu
,
C. C.
,
Cheng
,
C. K.
,
Huang
,
C. H.
, and
Lo
,
W. H.
, 2001, “
The Influence of Inserting a Fuji Pressure Sensitive Film Between the Tibiofemoral Joint of Knee Prosthesis on Actual Contact Characteristics
,”
Clin. Biomech.
,
16
, pp.
160
166
.
33.
Bachus
,
K. N.
,
DeMarco
,
A. L.
,
Judd
,
K. T.
,
Horwitz
,
D. S.
, and
Brodke
,
D. S.
, 2006, “
Measuring Contact Area, Force, and Pressure for Bioengineering Applications: Using Fuji Film and TekScan Systems
,”
Med. Eng. Phys.
,
28
, pp.
483
488
.
34.
Fregly
,
B. J.
, and
Sawyer
,
W. G.
, 2003, “
Estimation of Discretization Errors in Contact Pressure Measurements
,”
J. Biomech.
,
36
, pp.
609
613
.
35.
Hoffmann
,
K.
and
Decker
,
K.
, 2008, “
Inaccuracies in Measurement of Contact Pressure Due to the Measuring Grid of a Foil Sensor
,”
Int. J. Intell. Syst. Technol. Appl.
,
3
, pp.
80
94
.
36.
el-Bohy
,
A. A.
,
Yang
,
K. H.
, and
King
,
A. I.
, 1989, “
Experimental Verification of Facet Load Transmission by Direct Measurement of Facet Lamina Contact Pressure
,”
J. Biomech.
,
22
, pp.
931
941
.
37.
Kettler
,
A.
,
Rohlmann
,
F.
,
Neidlinger-Wilke
,
C.
,
Werner
,
K.
,
Claes
,
L.
, and
Wilke
,
H. J.
, 2006, “
Validity and Interobserver Agreement of a New Radiographic Grading System for Intervertebral Disc Degeneration: Part II. Cervical Spine
,”
Eur. Spine J.
,
15
(
6
), pp.
732
741
.
38.
Frobin
,
W.
,
Leivseth
,
G.
,
Biggemann
,
M.
, and
Brinckmann
,
P.
, 2002, “
Vertebral Height, Disc Height, Posteroanterior Displacement and Dens-Atlas Gap in the Cervical Spine: Precision Measurement Protocol and Normal Data
,”
Clin. Biomech.
,
17
(
6
), pp.
423
431
.
39.
Kikkawa
,
J.
,
Cunningham
,
B. W.
,
Shirado
,
O.
,
Hu
,
N.
,
McAfee
,
P. C.
, and
Oda
,
H.
, 2010, “
Multidirectional Flexibility of the Spine Following Posterior Decompressive Surgery after Single-Level Cervical Disc Arthroplasty: An in Vitro Biomechanical Investigation
,”
Spine
,
35
(
25
), pp.
E1465
E1471
.
40.
Ehteshami
,
J.
,
Natarajan
,
R.
, and
An
,
H. S.
, 2010, “
The Effects of Endplate Distraction During Cervical Spine Arthroplasty on Endplate Stress
,”
38th Annual Meeting of the Cervical Spine Research Society, Paper No. #71
.
41.
Dunlop
,
R. B.
,
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1984, “
Disc Space Narrowing and the Lumbar Facet Joints
,”
J. Bone Joint Surg. Br.
,
66
, pp.
706
710
.
42.
Siegmund
,
G. P.
,
Heinrichs
,
B. E.
,
Lawrence
,
J. M.
, and
Philippens
,
M. M.
, 2001, “
Kinetic and Kinematic Responses of the RID2a, Hybrid III and Human Volunteers in Low-Speed Rear-End Collisions
,”
Stapp Car Crash J.
,
45
, pp.
239
256
.
43.
Walker
,
L. B.
,
Harris
,
E. H.
, and
Pontius
,
U. R.
, 1973, “
Mass, Volume, Center of Mass and Mass Moment of Inertia of Head and Head and Neck of the Human Body
,”
17th Stapp Car Crash Conference
, Paper No. #730985.
44.
Nuckley
,
D. J.
,
Konodi
,
M. A.
,
Raynak
,
G. C.
,
Ching
,
R. P.
, and
Mirza
,
S. K.
, 2002, “
Neural Space Integrity of the Lower Cervical Spine: Effect of Normal Range of Motion
,”
Spine
,
27
(
6
), pp.
587
595
.
45.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Zhang
,
J.
, and
Baisden
,
J. L.
, 2009, “
Physical Properties of the Human Head: Mass, Center of Gravity and Moment of Inertia
,”
J. Biomech.
,
42
(
9
), pp.
1177
1192
.
46.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Ghanayem
,
A. J.
,
Diener
,
H.
,
Meade
,
K. P.
,
Dunlap
,
B.
, and
Hodges
,
S. D.
, 2000, “
Load-Carrying Capacity of the Human Cervical Spine in Compression is Increased Under a Follower Load
,”
Spine
,
25
(
12
), pp.
1548
1554
.
47.
Puttlitz
,
C. M.
,
Rousseau
,
M. A.
,
Xu
,
Z.
,
Hu
,
S.
,
Tay
,
B. K.
, and
Lotz
,
J. C.
, 2004, “
Intervertebral Disc Replacement Maintains Cervical Spine Kinetics
,”
Spine
,
29
(
24
), pp.
2809
1814
.
48.
Panjabi
,
M. M.
, 1992, “
The Stabilizing System of the Spine. Part II. Neutral Zone and Instability Hypothesis
,”
J. Spinal Disord.
,
5
, pp.
390
397
.
49.
Goel
,
V. K.
and
Clausen
,
J. D.
, 1998, “
Prediction of Load Sharing Among Spinal Components of a C5-C6 Motion Segment Using the Finite Element Approach
,”
Spine
,
23
, pp.
684
691
.
50.
Schendel
,
M. J.
,
Wood
,
K. B.
,
Buttermann
,
G. R.
,
Lewis
,
J. L.
, and
Ogilvie
,
J. W.
, 1993, “
Experimental Measurement of Ligament Force, Facet Force, and Segment Motion in the Human Lumbar Spine
,”
J. Biomech.
,
26
, pp.
427
438
.
51.
Teo
,
E. C.
, and
Ng
,
H. W.
, 2001, “
Evaluation of the Role of Ligaments, Facets and Disc Nucleus in Lower Cervical Spine Under Compression and Sagittal Moments Using Finite Element Method
,”
Med. Eng. Phys.
,
23
, pp.
155
164
.
52.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
, 2001, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine
,
26
, pp.
2692
2700
.
53.
White
,
A. A.
, and
Panjabi
,
M. M.
, 1990,
Clinical Biomechanics of the Spine
,
Lippincott
,
Philadelphia
.
54.
Cholewicki
,
J.
,
Panjabi
,
M. M.
,
Nibu
,
K.
, and
Macias
,
M. E.
, 1997, “
Spinal Ligament Transducer Based on a Hall Effect Sensor
,”
J. Biomech.
,
30
, pp.
291
293
.
55.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
, 2005, “
Effects of Abnormal Posture on Capsular Ligament Elongations in a Computational Model Subjected to Whiplash Loading
,”
J. Biomech.
,
38
, pp.
1313
1323
.
56.
Yamamoto
,
I.
,
Panjabi
,
M. M.
,
Crisco
,
T.
, and
Oxland
,
T.
, 1989, “
Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint
,”
Spine
,
14
, pp.
1256
1260
.
57.
Cook
,
D. J.
, and
Cheng
,
B. C.
, 2010, “
Development of a Model Based Method for Investigating Facet Articulation
,”
J. Biomech. Eng.
,
132
(
6
), p.
064504
.
58.
Serhan
,
H. A.
,
Varnavas
,
G.
,
Dooris
,
A. P.
,
Patwadhan
,
A.
, and
Tzermiadianos
,
M.
, 2007, “
Biomechanics of the Posterior Lumbar Articulating Elements
,”
Neurosurg. Focus
,
22
, pp.
E1
.
59.
Haher
,
T. R.
,
O’Brien
,
M.
,
Dryer
,
J. W.
,
Nucci
,
R.
,
Zipnick
,
R.
, and
Leone
,
D. J.
, 1994, “
The Role of the Lumbar Facet Joints in Spinal Stability. Identification of Alternative Paths of Loading
,”
Spine
19
, pp.
2667
2671
.
60.
Murtagh
,
R. D.
,
Quencer
,
R. M.
,
Cohen
,
D. S.
,
Yue
,
J. J.
, and
Sklar
,
E. L.
, 2009, “
Normal and Abnormal Imaging Findings in Lumbar Total Disk Replacement: Devices and Complications
,”
Radiographics
,
29
, pp.
105
118
.
61.
Lemaire
,
J. P.
,
Carrier
,
H.
,
Sariali el
,
H.
,
Skalli
,
W.
, and
Lavaste
,
F.
, 2005, “
Clinical and Radiological Outcomes With the Charite Artificial Disc: a 10-Year Minimum Follow-Up
,”
J. Spinal Disord. Tech.
,
18
, pp.
353
359
.
62.
van Ooij
,
A.
,
Oner
,
F. C.
, and
Verbout
,
A. J.
, 2003, “
Complications of Artificial Disc Replacement: A Report of 27 Patients With the SB Charite Disc
,”
J. Spinal Disord. Tech.
,
16
, pp.
369
383
.
You do not currently have access to this content.