The risk of myocardial penetration due to active-fixation screw-in type pacing leads has been reported to increase as the helix electrodes become smaller. In order to understand the contributing factors for lead penetration, we conducted finite element analyses of acute myocardial micro-damage induced by a pacemaker lead screw-in helix electrode. We compared the propensity for myocardial micro-damage of seven lead designs including a baseline model, three modified designs with various helix wire cross-sectional diameters, and three modified designs with different helix diameters. The comparisons show that electrodes with a smaller helix wire diameter cause more severe micro-damage to the myocardium in the early stage. The damage severity, represented by the volume of failed elements, is roughly the same in the middle stage, whereas in the later stage the larger helix wire diameter generally causes more severe damage. The onset of myocardial damage is not significantly affected by the helix diameter. As the helix diameter increases, however, the extent of myocardial damage increases accordingly. The present findings identified several of the major risk factors for myocardial damage whose consideration for lead use and design might improve acute and chronic lead performance.

References

1.
Trigano
,
A. J.
,
Taramasco
,
V.
,
Paganelli
,
F.
,
Gerard
,
R.
, and
Lévy
,
S.
, 1996, “
Incidence of Perforation and Other Mechanical Complications During Dual Active Fixation
,”
PACE
,
19
(
11
), pp.
1828
1831
.
2.
Aggarwal
,
R. K.
,
Connelly
,
D. T.
,
Ray
,
S. G.
,
Ball
,
J.
, and
Charles
,
R. G.
, 1995, “
Early Complications of Permanent Pacemaker Implantation: No Difference Between Dual and Single Chamber Systems
,”
Br. Heart J.
,
73
(
6
), pp.
571
575
.
3.
Fahy
,
G. J.
,
Kleman
,
J. M.
,
Wilkoff
,
B. L.
,
Morant
,
V. A.
, and
Pinski
,
S. L.
, 1995, “
Low Incidence of Lead Related Complications Associated with Nonthoracotomy Implantable Cardioverter Defibrillator Systems
,”
PACE
,
18
(
1
), pp.
172
178
.
4.
Molina
,
J. E.
, 1996, “
Perforation of the Right Ventricle by Transvenous Defibrillator Leads: Prevention and Treatment
,”
PACE
,
19
(
3
), pp.
288
292
.
5.
Danik
,
S. B.
,
Mansour
,
M.
,
Singh
,
J.
,
Reddy
,
V. Y.
,
Ellinor
,
P. T.
,
Milan
,
D.
,
Heist
,
E. K.
,
d’Avila
,
A.
,
Ruskin
,
J. N.
, and
Mela
,
T.
, 2007, “
Increased Incidence of Subacute Lead Perforation Noted with One Implantable Cardioverter-Defibrillator
,”
Heart Rhythm
,
4
(
4
), pp.
439
442
.
6.
Haghjoo
,
M.
,
Alizadeh
,
A.
,
Fazelifar
,
A. F.
,
Hajahmadi
,
M.
, and
Sadr-Ameli
,
M. A.
, 2010, “
Delayed Cardiac Perforation by One Small Body Diameter Defibrillator Lead
,”
J. Electrocardiol.
,
43
(
1
), pp.
71
73
.
7.
Gasser
,
T. C.
,
Gudmundson
,
P.
, and
Dohr
,
G.
, 2009, “
Failure Mechanisms of Ventricular Tissue Due to Deep Penetration
,”
J. Biomech.
,
42
(
5
), pp.
626
633
.
8.
Zhang
,
X.
,
Ma
,
N.
,
Fan
,
H.
,
Niu
,
G.
, and
Yang
,
W.
, 2007, “
In Vivo Mechanical Study of Helical Cardiac Pacing Electrode Interacting With Canine Myocardium
,
Acta Mech. Sinica
,
23
(
3
), pp.
275
280
.
9.
Fang
,
H.
,
Tang
,
T.
,
Zhang
,
X.
,
Zhuang
,
Z.
,
Yang
,
W.
, and
Zhao
,
Y.
, 2006, “
Finite Element Modeling of Cardiac Pacing/Defibrillation Lead Interaction with Heart
,”
Key Eng. Mater.
,
306–308
, pp.
1271
1276
.
10.
Hallquist
,
J.
, 2006,
LS-DYNA Theory Manual
,
Livermore Software Technology Corporation
,
Livermore, CA
.
11.
Przyklenk
,
K.
,
Connelly
,
C. M.
,
McLaughlin
,
R. J.
,
Kloner
,
R. A.
, and
Apstein
,
C. S.
, 1987, “
Effect of Myocyte Necrosis on Strength, Strain, and Stiffness of Isolated Myocardial Strips
,”
Am. Heart J.
,
114
(
6
), pp.
1349
1359
.
12.
Hallquist
,
J.
, 2007,
LS-DYNA Keyword User’s Manual
,
Livermore Software Technology Corporation
,
Livermore, CA
.
13.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
, 1991, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
J. Biomech. Eng.
,
113
(
1
), pp.
42
55
.
14.
Wenk
,
J. F.
,
Wall
,
S. T.
,
Peterson
,
R. C.
,
Helgerson
,
S. L.
,
Sabbah
,
H. N.
,
Burger
,
M.
,
Stander
,
N.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
, 2009, “
A Method for Automatically Optimizing Medical Devices for Treating Heart Failure: Designing Polymeric Injection Patterns
,”
J. Biomech. Eng.
,
131
(
12
), pp.
121011
121017
.
15.
Ortiz
,
M.
, and
Pandolfi
,
A.
, 1999, “
Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack Propagation Analysis
,”
Int. J. Numer. Methods Eng.
,
44
(
9
), pp.
1267
1282
.
You do not currently have access to this content.