In this study, two different turbulence methodologies are investigated to predict transitional flow in a 75% stenosed axisymmetric experimental arterial model and in a slightly modified version of the model with an eccentric stenosis. Large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) methods were applied; in the LES simulations eddy viscosity subgrid-scale models were employed (basic and dynamic Smagorinsky) while the RANS method involved the correlation-based transitional version of the hybrid k-ε/k-ω flow model. The RANS simulations used 410,000 and 820,000 element meshes for the axisymmetric and eccentric stenoses, respectively, with y+ less than 2 viscous wall units for the boundary elements, while the LES used 1,200,000 elements with y+ less than 1. Implicit filtering was used for LES, giving an overlap between the resolved and modeled eddies, ensuring accurate treatment of near wall turbulence structures. Flow analysis was carried out in terms of vorticity and eddy viscosity magnitudes, velocity, and turbulence intensity profiles and the results were compared both with established experimental data and with available direct numerical simulations (DNSs) from the literature. The simulation results demonstrated that the dynamic Smagorinsky LES and RANS transitional model predicted fairly comparable velocity and turbulence intensity profiles with the experimental data, although the dynamic Smagorinsky model gave the best overall agreement. The present study demonstrated the power of LES methods, although they were computationally more costly, and added further evidence of the promise of the RANS transition model used here, previously tested in pulsatile flow on a similar model. Both dynamic Smagorinsky LES and the RANS model captured the complex transition phenomena under physiological Reynolds numbers in steady flow, including separation and reattachment. In this respect, LES with dynamic Smagorinsky appeared more successful than DNS in replicating the axisymmetric experimental results, although inflow conditions, which are subject to caveats, may have differed. For the eccentric stenosis, LES with Smagorinsky coefficient of 0.13 gave the closest agreement with DNS despite the known shortcomings of fixed coefficients. The relaminarization as the flow escaped the influence of the stenosis was amply demonstrated in the simulations, graphically so in the case of LES.

1.
Slager
,
C. J.
,
Wentzel
,
J. J.
,
Gijsen
,
F. J. H.
,
Schuurbiers
,
J. C. H.
,
van der Wal
,
A.
,
van der Steen
,
A.
, and
Serruys
,
P. W.
, 2005, “
The Role of Shear Stress in the Generation of Rupture-Prone Vulnerable Plaques
,”
Nat. Clin. Pract. Cardiovasc. Med.
1743-4297,
2
, pp.
401
407
.
2.
Slager
,
C. J.
,
Wentzel
,
J. J.
,
Gijsen
,
F. J. H.
,
Thury
,
A.
,
van der Wal
,
A.
,
Schaar
,
J. A.
, and
Serruys
,
P. W.
, 2005, “
The Role of Shear Stress in the Destabilization of Vulnerable Plaques and Related Therapeutic Implications
,”
Nat. Clin. Pract. Cardiovasc. Med.
1743-4297,
2
, pp.
456
464
.
3.
Tan
,
F. P. P.
,
Soloperto
,
G.
,
Bashford
,
S.
,
Wood
,
N. B.
,
Thom
,
S.
,
Hughes
,
A.
, and
Xu
,
Y. X.
, 2008, “
Analysis of Flow Disturbances in a stenosed Carotid Artery Bifurcation Using Two-Equation Transitional And Turbulence Models
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
061008
.
4.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
, 1983, “
Velocity Measurements in Steady Flow Through Axisymmetric Stenoses at Moderate Reynolds Numbers
,”
J. Biomech.
0021-9290,
16
, pp.
505
516
.
5.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
, 1983, “
Flow Disturbance Measurements Through a Constricted Tube at Moderate Reynolds Numbers
,”
J. Biomech.
0021-9290,
16
, pp.
955
963
.
6.
Lieber
,
B. B.
, and
Giddens
,
D. P.
, 1990, “
Post-Stenotic Core Flow Behavior in Pulsatile Flow and Its Effects on Wall Shear Stress
,”
J. Biomech.
0021-9290,
23
, pp.
597
605
.
7.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
, 1984, “
Pulsatile Poststenotic Flow Studies With Laser Doppler Anemometry
,”
J. Biomech.
0021-9290,
17
, pp.
695
705
.
8.
Nerem
,
R. W.
,
Seed
,
W. A.
, and
Wood
,
N. B.
, 1972, “
An Experimental Study of the Velocity Distribution and Transition to Turbulence in the Aorta
,”
J. Fluid Mech.
0022-1120,
52
, pp.
137
160
.
9.
Wood
,
N. B.
, and
Xu
,
X. Y.
, 2006, “
Modelling of Haemodynamics in the Cardiovascular System by Integrating Medical Imaging Techniques and Computer Modelling Tools
,”
Multidisciplinary Approaches to Theory in Medicine
,
R.
Paton
and
L.
McNamara
, eds.,
Elsevier
,
New York
, pp.
325
335
.
10.
Cheng
,
Z.
,
Tan
,
F. P. P.
,
Riga
,
C. V.
,
Bicknell
,
C. D.
,
Hamady
,
M. S.
,
Gibbs
,
R. G. J.
,
Wood
,
N. B.
, and
Xu
,
X. Y.
, 2010, “
Analysis of Flow Patterns in a Patient-Specific Aortic Dissection Model
,”
ASME J. Biomech. Eng.
0148-0731,
132
, p.
051007
.
11.
Tan
,
F. P. P.
,
Torii
,
R.
,
Borghi
,
A.
,
Mohiaddin
,
R. H.
,
Wood
,
N. B.
, and
Xu
,
X. Y.
, 2009, “
Analysis of Flow Patterns in a patient-Specific Thoracic Aortic Aneurysm Model
,”
Comput. Struct.
0045-7949,
87
, pp.
680
690
.
12.
Tan
,
F. P. P.
,
Torii
,
R.
,
Borghi
,
A.
,
Mohiaddin
,
R. H.
,
Wood
,
N. B.
, and
Xu
,
X. Y.
, 2009, “
Fluid-Structure Interaction Analysis of Wall Stress and Flow Patterns in a Thoracic Aortic Aneurysm
,”
Int. J. App. Mech.
1758-8251,
1
, pp.
179
199
.
13.
Ahmed
,
S. A.
, 1998, “
An Experimental Investigation of Pulsatile Flow Through a Smooth Constriction
,”
Exp. Therm. Fluid Sci.
0894-1777,
17
, pp.
309
318
.
14.
Menter
,
F. R.
,
Langtry
,
R. B.
, and
Völker
,
S.
, 2006, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combust.
1386-6184,
77
, pp.
277
303
.
15.
Sherwin
,
S. J.
, and
Blackburn
,
H. M.
, 2005, “
Three-Dimensional Instabilities and Transition of Steady and Pulsatile Axisymmetric Stenotic Flows
,”
J. Fluid Mech.
0022-1120,
533
, pp.
297
327
.
16.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fisher
,
P. F.
, 2007, “
Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow
,”
J. Fluid Mech.
0022-1120,
582
, pp.
253
280
.
17.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fisher
,
P. F.
, 2007, “
Direct Numerical Simulation of Stenotic Flows. Part 2. Pulsatile Flow
,”
J. Fluid Mech.
0022-1120,
582
, pp.
281
318
.
18.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fisher
,
P. F.
, 2008, “
Modeling Transition to Turbulence in Eccentric Stenotic Flows
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
014503
.
19.
Mittal
,
R.
,
Simmons
,
S. P.
, and
Najjar
,
F.
, 2003, “
Numerical Study of Pulsatile Flow in a Constricted Channel
,”
J. Fluid Mech.
0022-1120,
485
, pp.
337
378
.
20.
Paul
,
M. C.
,
Molla
,
M. M.
, and
Roditi
,
G.
, 2009, “
Large-Eddy Simulation of Pulsatile Blood Flow
,”
Med. Eng. Phys.
1350-4533,
31
, pp.
153
159
.
21.
Beratlis
,
N.
,
Balaras
,
E.
, and
Kiger
,
K.
, 2007, “
Direct Numerical Simulations of Transitional Pulsatile Flow Through a Constriction
,”
J. Fluid Mech.
0022-1120,
587
, pp.
425
451
.
22.
Soloperto
,
G.
,
Keenan
,
N. G.
,
Sheppard
,
M. N.
,
Ohayon
,
J.
,
Wood
,
N. B.
,
Pennell
,
D. J.
,
Mohiaddin
,
R. H.
, and
Xu
,
X. Y.
, 2010, “
Combined Imaging, Computational and Histological Analysis of a Ruptured Carotid Plaque: A Patient-Specific Analysis
,”
Artery Res.
,
4
, pp.
59
65
.
23.
Wilcox
,
D. C.
, 2006,
Turbulence Modeling for CFD
,
3rd ed.
,
DWC Industries
,
La Canada, CA
.
24.
Barth
,
T. J.
, and
Jesperson
,
D. C.
, 1989, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Pap. No. 1989–0366, pp.
89
0366
.
25.
Ferziger
,
J. H.
, and
Peric
,
M.
, 1996,
Computational Methods for Fluid Dynamics
,
Springer
,
Berlin
.
26.
Hutchinson
,
B. R.
, and
Raithby
,
G. D.
, 1986, “
A Multigrid Method Based on the Additive Correction Strategy
,”
Numer. Heat Transfer, Part A
1040-7782,
9
, pp.
511
537
.
27.
Weller
,
H. G.
,
Tabor
,
G.
,
Gosman
,
A. D.
, and
Fureby
,
C.
, 1998, “
Application of a Flame-Wrinkling LES Combustion Model to a Turbulent Mixing Layer
,”
The 27th Symposium (International) on Combustion
, The Combustion Institute, pp.
899
907
.
28.
Fureby
,
C.
,
Tabor
,
G.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
, 1997, “
A Comparative Study of Subgrid Scale Models in Homogeneous Isotropic Turbulence
,”
Phys. Fluids
1070-6631,
9
, pp.
1416
1429
.
29.
Fureby
,
C.
,
Tabor
,
G.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
, 2000, “
Large Eddy Simulation of the Flow Around a Square Prism
,”
AIAA J.
0001-1452,
38
, pp.
442
452
.
30.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations. 1. The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
164
.
31.
Piomelli
,
U.
, 1999, “
Large-Eddy Simulation: Achievements and Challenges
,”
Prog. Aerosp. Sci.
0376-0421,
35
, pp.
335
362
.
32.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
1070-6631,
A3
, pp.
1760
1765
.
33.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids
1070-6631,
A4
, pp.
633
635
.
34.
Mahesh
,
K.
,
Constantinescu
,
K.
, and
Moin
,
P.
, 2004, “
A Numerical Method for Large Eddy Simulation in Complex Geometries
,”
J. Comput. Phys.
0021-9991,
197
, pp.
215
240
.
35.
Issa
,
R. I.
, 1986, “
Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
0021-9991,
62
, pp.
40
65
.
36.
Issa
,
R. I.
,
Gosman
,
A. D.
, and
Watkins
,
A. P.
, 1986, “
The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme
,”
J. Comput. Phys.
0021-9991,
62
, pp.
66
82
.
37.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Recherche Aerospatiale
,
1
, pp.
5
21
.
38.
Varghese
,
S. S.
, and
Frankel
,
S. H.
, 2003, “
Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
445
460
.
39.
Huai
,
X.
,
Joslin
,
R. D.
, and
Piomelli
,
U.
, 1997, “
Large-Eddy Simulation of Transition to Turbulence in Boundary Layers
,”
Theor. Comput. Fluid Dyn.
0935-4964,
9
, pp.
149
163
.
40.
Kravchenko
,
A. G.
,
Moin
,
P.
, and
Moser
,
R.
, 1996, “
Zonal Embedded Grids for Numerical Simulations of Wall-Bounded Turbulent Flows
,”
J. Comput. Phys.
0021-9991,
127
, pp.
412
423
.
41.
Blackburn
,
H. M.
,
Sherwin
,
S. J.
, and
Barkley
,
D.
, 2008, “
Convective Instability and Transient Growth in Steady and Pulsatile Stenotic Flows
,”
J. Fluid Mech.
0022-1120,
607
, pp.
267
277
.
42.
Meneveau
,
C.
, and
Katz
,
J.
, 2000, “
Scale-Invariance and Turbulence Models for Large-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
0066-4189,
32
, pp.
1
32
.
43.
Oefelein
,
J. C.
,
Schefer
,
R. W.
, and
Barlow
,
R. S.
, 2006, “
Toward Validation of Large Eddy Simulation for Turbulent Combustion
,”
AIAA J.
0001-1452,
44
, pp.
418
433
.
44.
Moin
,
P.
, and
Apte
,
S. V.
, 2006, “
Large-Eddy Simulation of Realistic Gas Turbine Combustors
,”
AIAA J.
0001-1452,
44
, pp.
698
708
.
You do not currently have access to this content.