Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

1.
Almeida
,
E. S.
, and
Spilker
,
R. L.
, 1997, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I—Alternate Formulations
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
(
1
), pp.
25
46
.
2.
Almeida
,
E. S.
, and
Spilker
,
R. L.
, 1998, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part II—Nonlinear Examples
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
(
2
), pp.
151
170
.
3.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
169
180
.
4.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
245
58
.
5.
Mow
,
V. C.
,
Ateshian
,
G. A.
, and
Spilker
,
R. L.
, 1993, “
Biomechanics of Diarthrodial Joints: A Review of Twenty Years of Progress
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
4B
), pp.
460
467
.
6.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
Liu
,
J.
, and
Baldwin
,
A. L.
, 1998, “
Porohyperelastic-Transport-Swelling Theory, Material Properties and Finite Element Models for Large Arteries
,”
Int. J. Solids Struct.
0020-7683,
35
(
34–35
), pp.
5021
5031
.
7.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
McAfee
,
M. A.
, and
Baldwin
,
A. L.
, 1998, “
Porohyperelastic Finite Element Analysis of Large Arteries Using ABAQUS
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
296
298
.
8.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
, 1992, “
A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
114
(
2
), pp.
191
201
.
9.
2008, ABAQUS User’s Manual, Version 6.8.
10.
Biot
,
M.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979,
12
, pp.
155
164
.
11.
Biot
,
M.
, 1962, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
0021-8979,
33
, pp.
1482
1498
.
12.
Biot
,
M.
, 1972, “
Theory of Finite Deformations of Porous Solids
,”
Indiana Math Journal
,
21
, pp.
597
620
.
13.
Bowen
,
R.
, 1971, “
Continuum Theory of Fluid Saturated Porous Media
,”
ASME J. Appl. Mech.
0021-8936,
38
(
3
), p.
716
.
14.
Bowen
,
R.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
18
, pp.
1129
1148
.
15.
Bowen
,
R.
, 1982, “
Compressible Porous-Media Models by the Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
20
(
6
), pp.
697
735
.
16.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
, 1981, “
Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
2
), pp.
61
66
.
17.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
18.
Ateshian
,
G. A.
,
Likhitpanichkul
,
M.
, and
Hung
,
C. T.
, 2006, “
A Mixture Theory Analysis for Passive Transport in Osmotic Loading of Cells
,”
J. Biomech.
0021-9290,
39
(
3
), pp.
464
475
.
19.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
,
V. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
, 2007, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
294
(
3
), pp.
197
205
.
20.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
0020-7225,
35
(
8
), pp.
793
802
.
21.
Huyghe
,
J. M.
,
Molenaar
,
M. M.
, and
Baajens
,
F. P.
, 2007, “
Poromechanics of Compressible Charged Porous Media Using the Theory of Mixtures
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
5
), pp.
776
785
.
22.
Koshiba
,
N.
,
Ando
,
J.
,
Chen
,
X.
, and
Hisada
,
T.
, 2007, “
Multiphysics Simulation of Blood Flow and LDL Transport in a Porohyperelastic Arterial Wall Model
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
3
), pp.
374
385
.
23.
Sengers
,
B. G.
,
Oomens
,
C. W.
, and
Baaijens
,
F. P.
, 2004, “
An Integrated Finite-Element Approach to Mechanics, Transport and Biosynthesis in Tissue Engineering
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
82
91
.
24.
Iatridis
,
J. C.
,
Laible
,
J. P.
, and
Krag
,
M. H.
, 2003, “
Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (PEACE) Model
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
12
24
.
25.
Schroeder
,
Y.
,
Wilson
,
W.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. P.
, 2006, “
Osmoviscoelastic Finite Element Model of the Intervertebral Disc
,”
Eur. Spine J.
0940-6719,
15
(
3
), pp.
361
371
.
26.
Sun
,
D. D.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 2004, “
The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
6
16
.
27.
Levenston
,
M. E.
,
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
, 1998, “
Variationally Derived 3-Field Finite Element Formulations for Quasistatic Poroelastic Analysis of Hydrated Biological Tissues
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
156
(
1–4
), pp.
231
246
.
28.
Wilson
,
W.
,
van Donkelaar
,
C. C.
, and
Huyghe
,
J. M.
, 2005, “
A Comparison Between Mechano-Electrochemical and Biphasic Swelling Theories for Soft Hydrated Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
158
165
.
29.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 1997, “
Evaluation of the Finite Element Software ABAQUS for Biomechanical Modelling of Biphasic Tissues
,”
J. Biomech.
0021-9290,
31
(
2
), pp.
165
169
.
30.
Feenstra
,
P. H.
, and
Taylor
,
C. A.
, 2009, “
Drug Transport in Artery Walls: A Sequential Porohyperelastic-Transport Approach
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
(
3
), pp.
263
276
.
31.
Ferguson
,
S. J.
,
Ito
,
K.
, and
Nolte
,
L. P.
, 2004, “
Fluid Flow and Convective Transport of Solutes Within the Intervertebral Disc
,”
J. Biomech.
0021-9290,
37
(
2
), pp.
213
221
.
32.
Hose
,
D. R.
,
Narracott
,
A. J.
,
Griffiths
,
B.
,
Mahmood
,
S.
,
Gunn
,
J.
,
Sweeney
,
D.
, and
Lawford
,
P. V.
, 2004, “
A Thermal Analogy for Modelling Drug Elution From Cardiovascular Stents
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
7
(
5
), pp.
257
264
.
33.
Chen
,
X.
, and
Sarntinoranont
,
M.
, 2007, “
Biphasic Finite Element Model of Solute Transport for Direct Infusion Into Nervous Tissue
,”
Ann. Biomed. Eng.
0090-6964,
35
(
12
), pp.
2145
2158
.
34.
Katchalsky
,
A.
, and
Curran
,
P. F.
, 1975,
Nonequilibrium Thermodynamics in Biophysics
,
4th ed.
,
Harvard University Press
,
Cambridge, MA
.
35.
Rigby
,
P. H.
, 2004, “
Characterization of Arteries and Tissue Engineered Vascular Grafts Using Experimental and Finite Element Models
,”
Biomedical Engineering
,
University of Arizona
,
Tucson, AZ
, p.
279
.
36.
Yao
,
H.
, and
Gu
,
W. Y.
, 2007, “
Three-Dimensional Inhomogeneous Triphasic Finite-Element Analysis of Physical Signals and Solute Transport in Human Intervertebral Disc Under Axial Compression
,”
J. Biomech.
0021-9290,
40
(
9
), pp.
2071
2077
.
37.
Oomens
,
C. W.
,
van Campen
,
D. H.
, and
Grootenboer
,
H. J.
, 1987, “
A Mixture Approach to the Mechanics of Skin
,”
J. Biomech.
0021-9290,
20
(
9
), pp.
877
85
.
38.
Cruysberg
,
L. P.
,
Nuijts
,
R. M.
,
Geroski
,
D. H.
,
Gilbert
,
J. A.
,
Hendrikse
,
F.
, and
Edelhauser
,
H. F.
, 2005, “
The Influence of Intraocular Pressure on the Transscleral Diffusion of High-Molecular-Weight Compounds
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
46
(
10
), pp.
3790
3794
.
You do not currently have access to this content.