Accurate modeling of arterial response to physiological or pathological loads may shed light on the processes leading to initiation and progression of a number of vascular diseases and may serve as a tool for prediction and diagnosis. In this study, a microstructure based hyperelastic constitutive model is developed for passive media of porcine coronary arteries. The most general model contains 12 independent parameters representing the three-dimensional inner fibrous structure of the media and includes the effects of residual stresses and osmotic swelling. Parameter estimation and model validation were based on mechanical data of porcine left anterior descending (LAD) media under radial inflation, axial extension, and twist tests. The results show that a reduced four parameter model is sufficient to reliably predict the passive mechanical properties. These parameters represent the stiffness and the helical orientation of each lamellae fiber and the stiffness of the interlamellar struts interconnecting these lamellae. Other structural features, such as orientational distribution of helical fibers and anisotropy of the interlamellar network, as well as possible transmural distribution of structural features, were found to have little effect on the global media mechanical response. It is shown that the model provides good predictions of the LAD media twist response based on parameters estimated from only biaxial tests of inflation and extension. In addition, good predictive capabilities are demonstrated for the model behavior at high axial stretch ratio based on data of law stretches.

1.
Doyle
,
J. M.
, and
Dobrin
,
P. B.
, 1971, “
Finite Deformation Analysis of the Relaxed and Contracted Dog Carotid Artery
,”
Microvasc. Res.
0026-2862,
3
(
4
), pp.
400
415
.
2.
von Maltzahn
,
W. W.
,
Warriyar
,
R. G.
, and
Keitzer
,
W. F.
, 1984, “
Experimental Measurements of Elastic Properties of Media and Adventitia of Bovine Carotid Arteries
,”
J. Biomech.
0021-9290,
17
(
11
), pp.
839
847
.
3.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
4.
Vito
,
R. P.
, and
Dixon
,
S. A.
, 2003, “
Blood Vessel Constitutive Models-1995-2002
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
413
439
.
5.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
, 2005, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerosis Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
, pp.
H2048
H2058
.
6.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
, 1968, “
Compressibility of the Arterial Wall
,”
Circ. Res.
0009-7330,
23
, pp.
61
68
.
7.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1984, “
Compressibility and Constitutive Equation of Arterial Wall in Radial Compression Experiments
,”
J. Biomech.
0021-9290,
17
(
1
), pp.
35
40
.
8.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
108
(
2
), pp.
189
192
.
9.
Omens
,
J. H.
, and
Fung
,
Y. C.
, 1990, “
Residual Strain in Rat Left Ventricle
,”
Circ. Res.
0009-7330,
66
(
1
), pp.
37
45
.
10.
Fung
,
Y. C.
, 1991, “
What Are the Residual Stresses Doing in Our Blood Vessels?
Ann. Biomed. Eng.
0090-6964,
19
(
3
), pp.
237
249
.
11.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1992, “
Strain Distribution in Small Blood Vessels With Zero-Stress State Taken Into Consideration
,”
Am. J. Physiol.
0002-9513,
262
(
2 Pt 2
), pp.
H544
552
.
12.
Guo
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
, 2007, “
Effect of Osmolarity on the Zero-Stress State and Mechanical Properties of Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
(
4
), pp.
H2328
H2334
.
13.
Lanir
,
Y.
, 2009, “
Mechanisms of Residual Stress in Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
4
), pp.
044506
.
14.
Lanir
,
Y.
,
Hayam
,
G.
,
Abovsky
,
M.
,
Zlotnick
,
Y.
,
Uretzky
,
G.
,
Nevo
,
E.
, and
Ben-Haim
,
S. A.
, 1996, “
Effect of Myocardial Swelling on Residual Strain in the Left Ventricle of the Rat
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
39
, pp.
H1736
H1743
.
15.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
,
V. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
, 2007, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
294
(
3
), pp.
H1197
H1205
.
16.
Vaishnav
,
R. N.
,
Young
,
J. T.
,
Janicki
,
J. S.
, and
Patel
,
D. J.
, 1972, “
Nonlinear Anisotropic Elastic Properties of the Canine Aorta
,”
Biophys. J.
0006-3495,
12
(
8
), pp.
1008
1027
.
17.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
, 1979, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
237
, pp.
H620
H631
.
18.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1983, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
105
(
3
), pp.
268
274
.
19.
Takamizawa
,
K.
, and
Hayashi
,
K.
, 1987, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
0021-9290,
20
(
1
), pp.
7
17
.
20.
Humphrey
,
J. D.
, 1995, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
0278-940X,
23
(
1–2
), pp.
1
162
.
21.
Roach
,
M. R.
, and
Burton
,
A. C.
, 1957, “
The Reason for the Shape of the Distensibility Curves of Arteries
,”
Can. J. Biochem. Physiol.
0576-5544,
35
(
8
), pp.
681
690
.
22.
Oka
,
S.
, and
Azuma
,
T.
, 1970, “
Physical Theory of Tension in Thick-Walled Blood Vessels in Equilibrium
,”
Biorheology
0006-355X,
7
(
2
), pp.
109
117
.
23.
Azuma
,
T.
, and
Oka
,
S.
, 1971, “
Mechanical Equilibrium of Blood Vessel Walls
,”
Am. J. Physiol.
0002-9513,
221
(
5
), pp.
1310
1318
.
24.
Azuma
,
T.
, and
Hasegawa
,
M.
, 1971, “
A Rheological Approach to the Architecture of Arterial Walls
,”
Jpn. J. Physiol.
0021-521X,
21
(
1
), pp.
27
47
.
25.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
26.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
, 2002, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Simulation
,”
Eur. J. Mech. A/Solids
0997-7538,
21
(
3
), pp.
441
463
.
27.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2004, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
264
275
.
28.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2004, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
0021-9290,
37
(
7
), pp.
989
1000
.
29.
Zulliger
,
M. A.
, and
Stergiopulos
,
N.
, 2007, “
Structural Strain Energy Function Applied to the Ageing of the Human Aorta
,”
J. Biomech.
0021-9290,
40
(
14
), pp.
3061
3069
.
30.
Tsamis
,
A.
, and
Stergiopulos
,
N.
, 2007, “
Arterial Remodeling in Response to Hypertension Using a Constituent-Based Model
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
(
5
), pp.
H3130
H3139
.
31.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
, 2008, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
(
4
), pp.
245
262
.
32.
Tsamis
,
A.
,
Stergiopulos
,
N.
, and
Rachev
,
A.
, 2009, “
A Structure-Based Model of Arterial Remodeling in Response to Sustained Hypertension
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
10
), p.
101004
.
33.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
1742-5689,
3
, pp.
15
35
.
34.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
, 2004, “
A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover
,”
J. Vasc. Res.
1018-1172,
41
(
4
), pp.
352
363
.
35.
Gleason
,
R. L.
, Jr.
, and
Humphrey
,
J. D.
, 2005, “
A 2D Constrained Mixture Model for Arterial Adaptations to Large Changes in Flow, Pressure and Axial Stretch
,”
Mathematical Medicine and Biology: A Journal of the IMA
,
22
(
4
), pp.
347
369
.
36.
Deng
,
S. X.
,
Tomioka
,
J.
,
Debes
,
J. C.
, and
Fung
,
Y. C.
, 1994, “
New Experiments on Shear Modulus of Elasticity of Arteries
,”
Am. J. Physiol.
0002-9513,
266
(
1 Pt 2
), pp.
H1
H10
.
37.
Lu
,
X.
,
Yang
,
J.
,
Zhao
,
J. B.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2003, “
Shear Modulus of Porcine Coronary Artery: Contributions of Media and Adventitia
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
285
, pp.
1966
1975
.
38.
Wolinsky
,
H.
, and
Glagov
,
S.
, 1967, “
A Lamellar Unit of Aortic Medial Structure and Function in Mammals
,”
Circ. Res.
0009-7330,
20
, pp.
99
111
.
39.
Wasano
,
K.
, and
Yamamoto
,
T.
, 1983, “
Tridimensional Architecture of Elastic Tissue in the Rat Aorta and Femoral Artery—A Scanning Electron Microscope Study
,”
J. Electron Microsc.
0022-0744,
32
(
1
), pp.
33
44
.
40.
Clark
,
J. M.
, and
Glagov
,
S.
, 1985, “
Transmural Organization of the Arterial Media. The Lamellar Unit Revisited
,”
Arteriosclerosis (Dallas)
0276-5047,
5
, pp.
19
34
.
41.
O’Connell
,
M. K.
,
Murthy
,
S.
,
Phan
,
S.
,
Xu
,
C.
,
Buchanan
,
J.
,
Spilker
,
R.
,
Dalman
,
R. L.
,
Zarins
,
C. K.
,
Denk
,
W.
, and
Taylor
,
C. A.
, 2008, “
The Three-Dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3d Confocal and Electron Microscopy Imaging
,”
Matrix Biol.
0945-053X,
27
(
3
), pp.
171
181
.
42.
Dahl
,
S. L. M.
,
Vaughn
,
M. E.
, and
Niklason
,
L. E.
, 2007, “
An Ultrastructural Analysis of Collagen in Tissue Engineered Arteries
,”
Ann. Biomed. Eng.
0090-6964,
35
(
10
), pp.
1749
1755
.
43.
Sverdlik
,
A.
, and
Lanir
,
Y.
, 2002, “
Time-Dependent Mechanical Behavior of Sheep Digital Tendons, Including the Effects of Preconditioning
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
78
84
.
44.
Raz
,
E.
, and
Lanir
,
Y.
, 2009, “
Recruitment Viscoelasticity of the Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
11
), p.
111008
.
45.
Horowitz
,
A.
,
Lanir
,
Y.
,
Yin
,
F. C.
,
Perl
,
M.
,
Sheinman
,
I.
, and
Strumpf
,
R. K.
, 1988, “
Structural Three-Dimensional Constitutive Law for the Passive Myocardium
,”
ASME J. Biomech. Eng.
0148-0731,
110
(
3
), pp.
200
207
.
46.
Nevo
,
E.
, and
Lanir
,
Y.
, 1989, “
Structural Finite Deformation Model of the Left Ventricle During Diastole and Systole
,”
ASME J. Biomech. Eng.
0148-0731,
111
(
4
), pp.
342
349
.
47.
Nash
,
M. P.
, and
Hunter
,
P. J.
, 2000, “
Computational Mechanics of the Heart
,”
J. Elast.
0374-3535,
61
(
1–3
), pp.
113
141
.
48.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part Ii—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
327
335
.
49.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
280
287
.
50.
Lokshin
,
O.
, and
Lanir
,
Y.
, 2009, “
Micro and Macro Rheology of Planar Tissues
,”
Biomaterials
0142-9612,
30
(
17
), pp.
3118
3127
.
51.
Farquhar
,
T.
,
Dawson
,
P. R.
, and
Torzilli
,
P. A.
, 1990, “
A Microstructural Model for the Anisotropic Drained Stiffness of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
4
), pp.
414
425
.
52.
Green
,
A. E.
, and
Adkins
,
J. E.
, 1970,
Large Elastic Deformations
,
2nd ed.
,
Oxford University Press
,
New York
.
53.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
, 1989, “
A Theoretically-Based Experimental Approach for Identifying Vascular Constitutive Relations
,”
Biorheology
0006-355X,
26
(
4
), pp.
687
702
.
54.
Fung
,
Y. C.
, 1993,
Biomechanics—Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer
,
New York
.
55.
Spencer
,
A. J. M.
, 1980,
Continuum Mechanics
,
Longman Group Limited
,
London
.
56.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
16
(
1
), pp.
1
12
.
57.
Canham
,
P. B.
,
Finlay
,
H. M.
,
Dixon
,
J. G.
,
Boughner
,
D. R.
, and
Chen
,
A.
, 1989, “
Measurements From Light and Polarised Light Microscopy of Human Coronary Arteries Fixed at Distending Pressure
,”
Cardiovasc. Res.
0008-6363,
23
(
11
), pp.
973
982
.
58.
Canham
,
P. B.
,
Finlay
,
H. M.
, and
Boughner
,
D. R.
, 1997, “
Contrasting Structure of the Saphenous Vein and Internal Mammary Artery Used as Coronary Bypass Vessels
,”
Cardiovasc. Res.
0008-6363,
34
(
3
), pp.
557
567
.
59.
Hindmarsh
,
A. C.
,
Brown
,
P. N.
,
Grant
,
K. E.
,
Lee
,
S. L.
,
Serban
,
R.
,
Shumaker
,
D. E.
, and
Woodward
,
C. S.
, 2005, “
Sundials: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,”
ACM Trans. Math. Softw.
0098-3500,
31
, pp.
363
396
.
60.
Wang
,
C.
,
Garcia
,
M.
,
Lu
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
, 2006, “
Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
291
(
3
), pp.
H1200
H1209
.
61.
Su
,
F. C.
, and
Taber
,
L. A.
, 1992, “
Torsional Boundary Layer Effects in Shells of Revolution Undergoing Large Axisymmetric Deformation
,”
Comput. Mech.
0178-7675,
10
(
1
), pp.
23
37
.
62.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 2002,
Numerical Recipes in C
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
63.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Weseley
,
Reading, MA
.
64.
Adcock
,
S.
, 2004, Gaul, the Genetic Algorithm Utility Library, http://gaul.sourceforge.nethttp://gaul.sourceforge.net
65.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
, 2004, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerosis Plaques
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
657
665
.
66.
Lanir
,
Y.
, 1996, “
Plausibility of Structural Constitutive Equations for Swelling Tissues—Implications of the C-N and S-E Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
10
16
.
67.
Horowitz
,
A.
,
Sheinman
,
I.
, and
Lanir
,
Y.
, 1988, “
Nonlinear Incompressible Finite Element for Simulating Loading of Cardiac Tissue–Part II: Three Dimensional Formulation for Thick Ventricular Wall Segments
,”
ASME J. Biomech. Eng.
0148-0731,
110
(
1
), pp.
62
68
.
You do not currently have access to this content.