Simulations of blood flow in both healthy and diseased vascular models can be used to compute a range of hemodynamic parameters including velocities, time varying wall shear stress, pressure drops, and energy losses. The confidence in the data output from cardiovascular simulations depends directly on our level of certainty in simulation input parameters. In this work, we develop a general set of tools to evaluate the sensitivity of output parameters to input uncertainties in cardiovascular simulations. Uncertainties can arise from boundary conditions, geometrical parameters, or clinical data. These uncertainties result in a range of possible outputs which are quantified using probability density functions (PDFs). The objective is to systemically model the input uncertainties and quantify the confidence in the output of hemodynamic simulations. Input uncertainties are quantified and mapped to the stochastic space using the stochastic collocation technique. We develop an adaptive collocation algorithm for Gauss–Lobatto–Chebyshev grid points that significantly reduces computational cost. This analysis is performed on two idealized problems – an abdominal aortic aneurysm and a carotid artery bifurcation, and one patient specific problem – a Fontan procedure for congenital heart defects. In each case, relevant hemodynamic features are extracted and their uncertainty is quantified. Uncertainty quantification of the hemodynamic simulations is done using (a) stochastic space representations, (b) PDFs, and (c) the confidence intervals for a specified level of confidence in each problem.

1.
Ku
,
J. P.
,
Draney
,
M. T.
,
Arko
,
F. R.
,
Lee
,
W. A.
,
Chan
,
F. P.
,
Pelc
,
N. J.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
, 2002, “
In Vivo Validation of Numerical Prediction of Blood Flow in Arterial Bypass Grafts
,”
Ann. Biomed. Eng.
0090-6964,
30
(
6
), pp.
743
752
.
2.
Leuprecht
,
A.
,
Perktold
,
K.
,
Prosi
,
M.
,
Berk
,
T.
,
Trubel
,
W.
, and
Schima
,
H.
, 2002, “
Numerical Study of Hemodynamics and Wall Mechanics in Distal End-to-Side Anastomoses of Bypass Grafts
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
225
236
.
3.
Perktold
,
K.
,
Leuprecht
,
A.
,
Prosi
,
M.
,
Berk
,
T.
,
Czerny
,
M.
,
Trubel
,
W.
, and
Schima
,
H.
, 2002, “
Fluid Dynamics, Wall Mechanics, and Oxygen Transfer in Peripheral Bypass Anastomoses
,”
Ann. Biomed. Eng.
0090-6964,
30
(
4
), pp.
447
460
.
4.
Steele
,
B. N.
,
Draney
,
M. T.
,
Ku
,
J. P.
, and
Taylor
,
C. A.
, 2003, “
Internet-Based System for Simulation-Based Medical Planning for Cardiovascular Disease
,”
IEEE Trans. Inf. Technol. Biomed.
1089-7771,
7
(
2
), pp.
123
129
.
5.
Wilson
,
N.
,
Arko
,
F. R.
, and
Taylor
,
C. A.
, 2004, “
Medical Image Computing and Computer-Assisted Intervention
,”
Lect. Notes Comput. Sci.
0302-9743,
3217
, pp.
422
429
.
6.
Milner
,
J. S.
,
Moore
,
J. A.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 1998, “
Hemodynamics of Human Carotid Artery Bifurcations: Computational Studies With Models Reconstructed From Magnetic Resonance Imaging of Normal Subjects
,”
J. Vasc. Surg.
0741-5214,
28
(
1
), pp.
143
156
.
7.
Tang
,
B. T.
,
Cheng
,
C. P.
,
Draney
,
M. T.
,
Wilson
,
N. M.
,
Tsao
,
P. S.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
, 2006, “
Abdominal Aortic Hemodynamics in Young Healthy Adults at Rest and During Lower Limb Exercise: Quantification Using Image-Based Computer Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
291
(
2
), pp.
H668
H676
.
8.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
, 1998, “
Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis
,”
Ann. Biomed. Eng.
0090-6964,
26
(
6
), pp.
975
987
.
9.
Marsden
,
A. L.
,
Vignon-Clementel
,
I. E.
,
Chan
,
F. P.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
, 2007, “
Effects of Exercise and Respiration on Hemodynamic Efficiency in CFD Simulations of the Total Cavopulmonary Connection
,”
Ann. Biomed. Eng.
0090-6964,
35
(
2
), pp.
250
263
.
10.
Marsden
,
A. L.
,
Bernstein
,
A. J.
,
Spilker
,
R. L.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
, 2007, “
Large Differences in Efficiency Among Fontan Patients Demonstrated in Patient Specific Models of Blood Flow Simulations
,”
Circulation
0009-7322,
116
(
16
), pp.
480
480
.
11.
Bove
,
E. L.
,
de Leval
,
M. R.
,
Migliavacca
,
F.
,
Guadagni
,
G.
, and
Dubini
,
G.
, 2003, “
Computational Fluid Dynamics in the Evaluation of Hemodynamic Performance of Cavopulmonary Connections After the Norwood Procedure for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
126
(
4
), pp.
1040
1047
.
12.
Marsden
,
A. L.
,
Bernstein
,
A. D.
,
Reddy
,
V. M.
,
Shadden
,
S.
,
Spilker
,
R.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
, 2009, “
Evaluation of a Novel Y-Shaped Extracardiac Fontan Baffle Using Computational Fluid Dynamics
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
137
, pp.
394
403
.
13.
LaDisa
,
J. F.
,
Guler
,
I.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2003, “
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
,”
Ann. Biomed. Eng.
0090-6964,
31
(
8
), pp.
972
980
.
14.
LaDisa
,
J. F.
,
Olson
,
L. E.
,
Molthen
,
R. C.
,
Hettrick
,
D. A.
,
Pratt
,
P. F.
,
Hardel
,
M. D.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2005, “
Alterations in Wall Shear Stress Predict Sites of Neointimal Hyperplasia After Stent Implantation in Rabbit Iliac Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
(
5
), pp.
H2465
H2475
.
15.
LaDisa
,
J. F.
,
Olson
,
L. E.
,
Douglas
,
H. A.
,
Warltier
,
D. C.
,
Kersten
,
J. R.
, and
Pagel
,
P. S.
, 2006, “
Alterations in Regional Vascular Geometry Produced by Theoretical Stent Implantation Influence Distributions of Wall Shear Stress: Analysis of a Curved Coronary Artery Using 3D Computational Fluid Dynamics Modeling
,” Biomedical Engineering Online.
16.
Moore
,
J. A.
,
Steinman
,
D. A.
, and
Ethier
,
C. R.
, 1997, “
Computational Blood Flow Modelling: Errors Associated With Reconstructing Finite Element Models From Magnetic Resonance Images
,”
J. Biomech.
0021-9290,
31
, pp.
179
184
.
17.
Moore
,
J. A.
,
Steinman
,
D. A.
,
Holdsworth
,
D. W.
, and
Ethier
,
C. R.
, 1999, “
Accuracy of Computational Hemodynamics in Complex Arterial Geometries Reconstructed From Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
0090-6964,
27
, pp.
32
41
.
18.
Moyle
,
K. R.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2006, “
Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is It Reasonable to Assume Fully-Developed Flow
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
3
), pp.
371
379
.
19.
Lee
,
S. W.
, and
Steinman
,
D. A.
, 2007, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
273
278
.
20.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
21.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
4927
4948
.
22.
Najm
,
H. N.
, 2009, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
41
, pp.
35
52
.
23.
Xiu
,
D.
, and
Hesthaven
,
J. S.
, 2005, “
High Order Collocation Methods for the Differential Equation With Random Inputs
,”
J. Sci. Comput.
0885-7474,
27
, pp.
1118
1139
.
24.
Babuska
,
I.
,
Nobile
,
F.
, and
Tempone
,
R.
, 2007, “
A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data
,”
SIAM J. Num. Anal.
,
45
(
3
), pp.
1005
1034
.
25.
Sankaran
,
S.
, and
Zabaras
,
N.
, 2006, “
A Maximum Entropy Approach for Property Prediction of Random Microstructures
,”
Acta Mater.
1359-6454,
54
(
8
), pp.
2265
2276
.
26.
Loève
,
M.
, 1977,
Probability Theory
,
4th ed.
,
Springer-Verlag
,
Berlin
.
27.
Klimke
,
A.
, 2006, “
Uncertainty Modeling Using Fuzzy Arithmetic and Sparse Grids
,” Ph.D. thesis, Universitt Stuttgart, Shaker Verlag, Aachen.
28.
Ganapathysubramanian
,
B.
, and
Zabaras
,
N.
, 2007, “
Sparse Grid Collocation Schemes for Stochastic Natural Convection Problems
,”
J. Comput. Phys.
0021-9991,
225
, pp.
652
685
.
29.
Klimke
,
A.
, 2006, “
Sparse Grid Interpolation Toolbox Users Guide
,” IANS Report No. 2006/001.
30.
Gerstner
,
T.
, and
Griebel
,
M.
, 1998, “
Numerical Integration Using Sparse Grids
,”
Numer. Algorithms
1017-1398,
18
, pp.
209
232
.
31.
Müller
,
J.
,
Sahni
,
O.
,
Li
,
X.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
, 2005, “
Anisotropic Adaptive Finite Element Method for Modeling Blood Flow
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
8
(
5
), pp.
295
305
.
32.
Wilson
,
N.
,
Wang
,
K.
,
Dutton
,
R.
, and
Taylor
,
C. A.
, 2001, “
A Software Framework for Creating Patient Specific Geometric Models From Medical Imaging Data for Simulation Based Medical Planning of Vascular Surgery
,”
Lect. Notes Comput. Sci.
0302-9743,
2208
, pp.
449
456
.
33.
Schmidt
,
J. P.
,
Delp
,
S. L.
,
Sherman
,
M. A.
,
Taylor
,
C. A.
,
Pande
,
V. S.
, and
Altman
,
R. B.
, 2008, “
The Simbios National Center: Systems Biology in Motion
,”
Proc. IEEE
0018-9219,
96
(
8
), pp.
1266
1280
.
34.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
, 1997, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
(
1–2
), pp.
155
196
.
35.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
, 2000, “
A Generalized-Alpha Method for Integrating the Filtered Navier Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
3–4
), pp.
305
319
.
36.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3776
3796
.
37.
Ma
,
X.
, and
Zabaras
,
N.
, 2009, “
An Adaptive Hierarchical Sparse Grid Collocation Algorithm for the Solution of Stochastic Differential Equations
,”
J. Comput. Phys.
0021-9991,
228
(
8
), pp.
3084
3113
.
38.
Lipnikov
,
K.
, and
Vassilevski
,
Y.
, 2006, “
Analysis of Hessian Recovery Methods for Generating Adaptive Meshes
,”
Proceedings of the 15th International Meshing Roundtable
,
Springer
,
Berlin
.
39.
Lasheras
,
J.
, 2007, “
The Biomechanics of Arterial Aneurysms
,”
Annu. Rev. Fluid Mech.
0066-4189,
39
, pp.
293
319
.
40.
Wilson
,
N.
,
Wang
,
K.
,
Dutton
,
R.
, and
Taylor
,
C. A.
, 2005, “
Changes in the Hemodynamic Stresses Occurring During the Enlargement of Abdominal Aortic Aneurysms
,” Ph.D. thesis, University of California, San Diego, San Diego, CA.
41.
Wurzinger
,
L. J.
,
Blasberg
,
P.
, and
Schmid-Schonbein
,
H.
, 1985, “
Towards a Concept of Thrombosis in Accelerated Flow: Rheology, Fluid Dynamics, and Biochemistry
,”
Biorheology
0006-355X,
22
, pp.
437
449
.
42.
Egelhoff
,
C. J.
,
Budwig
,
R. S.
,
Elger
,
D. F.
,
Khraishi
,
T. A.
, and
Johansen
,
K. H.
, 1999, “
Model Studies of the Flow in Abdominal Aortic Aneurysms During Resting and Exercise Conditions
,”
J. Biomech.
0021-9290,
32
(
12
), pp.
1319
1329
.
43.
Salsac
,
A. V.
,
Sparks
,
S. R.
, and
Lasheras
,
J. C.
, 2004, “
Hemodynamic Changes Occurring During the Progressive Enlargement of Abdominal Aortic Aneurysms
,”
Ann. Vasc. Surg.
0890-5096,
18
(
1
), pp.
14
21
.
44.
Taylor
,
T. W.
, and
Yamaguchi
,
T.
, 1994, “
Three-Dimensional Simulation of Blood Flow in an Abdominal Aortic Aneurysm: Steady and Unsteady Flow Cases
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
1
), pp.
89
97
.
45.
Raghavan
,
M. L.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
, 2000, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
31
(
4
), pp.
760
769
.
46.
Scotti
,
C. M.
, and
Finol
,
E. A.
, 2007, “
Compliant Biomechanics of Abdominal Aortic Aneurysms: A Fluid-Structure Interaction Study
,”
Comput. Struct.
0045-7949,
85
(
11–14
), pp.
1097
1113
.
47.
Leung
,
J. H.
,
Wright
,
A. R.
,
Cheshire
,
N.
,
Crane
,
J.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Xu
,
Y.
, 2006, “
Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: A Comparison With Solid Stress Models
,” Biomedical Engineering Online.
48.
Shadden
,
S. C.
, and
Taylor
,
C. A.
, 2008, “
Characterization of Coherent Structures in the Cardiovascular System
,”
Ann. Biomed. Eng.
0090-6964,
36
(
7
), pp.
1152
1162
.
49.
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bharadvaj
,
B. K.
,
Sottiurai
,
V. S.
,
Mabon
,
R. F.
, and
Glagov
,
S.
, 1983, “
Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
0009-7330,
53
, pp.
502
514
.
50.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
5
, pp.
293
302
.
51.
Thomas
,
J. B.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2003, “
Reproducibility of Image-Based Computational Fluid Dynamics Models of the Human Carotid Bifurcation
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
132
141
.
52.
Marshall
,
I.
,
Papathanasopoulou
,
P.
, and
Wartolowksa
,
K.
, 2004, “
Carotid Flow Rates and Flow Division at the Bifurcation in Healthy Volunteers
,”
Physiol. Meas
0967-3334,
25
(
3
), pp.
691
697
.
53.
Migliavacca
,
F.
,
Kilner
,
P. J.
,
Pennati
,
G.
,
Dubini
,
G.
,
Pietrabissa
,
R.
,
Fumero
,
R.
, and
de Leval
,
M. R.
, 1999, “
Computational Fluid Dynamic and Magnetic Resonance Analyses of Flow Distribution Between the Lungs After Total Cavopulmonary Connection
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
(
4
), pp.
393
399
.
54.
Whitehead
,
K. K.
,
Pekkan
,
K.
,
Kitajima
,
H. D.
,
Paridon
,
S. M.
,
Yoganathan
,
A. P.
, and
Fogel
,
M. A.
, 2007, “
Nonlinear Power Loss During Exercise in Single-Ventricle Patients After the Fontan—Insights From Computational Fluid Dynamics
,”
Circulation
0009-7322,
116
(
11
), pp.
I165
I171
.
55.
Dasi
,
L. P.
,
Pekkan
,
K.
,
Katajima
,
H. D.
, and
Yoganathan
,
A.
, 2008, “
Functional Analysis of Fontan Energy Dissipation
,”
J. Biomech.
0021-9290,
41
, pp.
2246
2252
.
56.
Cheng
,
C. P.
,
Herfkens
,
R. J.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
, 2005, “
Proximal Pulmonary Artery Blood Flow Characteristics in Healthy Subjects Measured in an Upright Posture Using MRI: The Effects of Exercise and Age
,”
J. Magn. Reson Imaging
1053-1807,
21
(
6
), pp.
752
758
.
57.
Westerhof
,
N.
,
Bosman
,
F.
,
DeVries
,
C. J.
, and
Noordergraaf
,
A.
, 1969, “
Analogue Studies of the Human Systemic Arterial Tree
,”
J. Biomech.
0021-9290,
2
, pp.
121
143
.
58.
Pike
,
N. A.
,
Vricella
,
L. A.
,
Feinstein
,
J. A.
,
Black
,
M. D.
, and
Reitz
,
B. A.
, 2004, “
Regression of Severe Pulmonary Arteriovenous Malformations After Fontan Revision and “Hepatic Factor” Rerouting
,”
Ann. Thorac. Surg.
0003-4975,
78
, pp.
697
699
.
59.
Marsden
,
A.
,
Reddy
,
V.
,
Shadden
,
S.
,
Chan
,
F.
,
Taylor
,
C.
, and
Feinstein
,
J.
, 2010, “
A New Multi-Parameter Approach to Computational Simulation for Fontan Assessment and Redesign
,”
Congenital Heart Disease
,
5
, pp.
104
117
.
60.
Marsden
,
A. L.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
, 2008, “
A Computational Framework for Derivative-Free Optimization of Cardiovascular Geometries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
(
21–24
), pp.
1890
1905
.
61.
Sankaran
,
S.
, and
Marsden
,
A. L.
, 2010, “
A Method for Stochastic Constrained Optimization Using Derivative-Free Surrogate Pattern Search and Collocation?
,”
J. Comput. Phys.
0021-9991,
229
(
12
), pp.
4664
4682
.
62.
Le Maître
,
O. P.
,
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
, 2004, “
Uncertainty Propagation Using Wiener–Haar Expansions
,”
J. Comput. Phys.
0021-9991,
197
(
1
), pp.
28
57
.
You do not currently have access to this content.