Laser direct-write technology such as modified laser-induced forward transfer (LIFT) is emerging as a revolutionary technology for biological construct fabrication. While many modified LIFT-based cell direct writing successes have been achieved, possible process-induced cell injury and death is still a big hurdle for modified LIFT-based cell direct writing to be a viable technology. The objective of this study is to propose metallic foil-assisted LIFT using a four-layer structure to achieve better droplet size control and increase cell viability in direct writing of human colon cancer cells (HT-29). The proposed four layers include a quartz disk, a sacrificial and adhesive layer, a metallic foil, and a cell suspension layer. The bubble formation-induced stress wave is responsible for droplet formation. It is found that the proposed metallic foil-assisted LIFT approach is an effective cell direct-write technology and provides better printing resolution and high post-transfer cell viability when compared with other conventional modified LIFT technologies such as matrix-assisted pulsed-laser evaporation direct-write; at the same time, the possible contamination from the laser energy absorbing material is minimized using a metallic foil.

1.
Lewis
,
J. A.
, and
Gratson
,
G. M.
, 2004, “
Direct Writing in Three Dimensions
,”
Mater. Today
1369-7021,
7
(
7–8
), pp.
32
39
.
2.
Ringeisen
,
B. R.
,
Othon
,
C. M.
,
Barron
,
J. A.
,
Young
,
D.
, and
Spargo
,
B. J.
, 2006, “
Jet-Based Methods to Print Living Cells
,”
J. Biotechnol.
0168-1656,
1
(
9
), pp.
930
948
.
3.
Lin
,
Y.
,
Huang
,
G.
,
Huang
,
Y.
,
Tzeng
,
J.
, and
Chrisey
,
D. B.
, 2010, “
Effect of Laser Fluence in Laser-Assisted Direct Writing of Human Colon Cancer Cell
,”
Rapid Prototyping J.
1355-2546,
16
(
3
), pp.
202
208
.
4.
Piqué
,
A.
, and
Chrisey
,
D. B.
, 2001,
Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources
,
1st ed.
,
Academic
,
New York
.
5.
Ringeisen
,
B. R.
,
Kim
,
H.
,
Barron
,
J. A.
,
Krizman
,
D. B.
,
Chrisey
,
D. B.
,
Jackman
,
S.
,
Auyeung
,
R. C. Y.
, and
Spargo
,
B. J.
, 2004, “
Laser Printing of Pluripotent Embryonal Carcinoma Cells
,”
Tissue Eng.
1076-3279,
10
(
3–4
), pp.
483
491
.
6.
Barron
,
J. A.
,
Wu
,
P.
,
Ladouceur
,
H. D.
, and
Ringeisen
,
B. R.
, 2004, “
Biological Laser Printing: A Novel Technique for Creating Heterogeneous 3-Dimensional Cell Patterns
,”
Biomed. Microdevices
1387-2176,
6
(
2
), pp.
139
147
.
7.
Hopp
,
B.
,
Smausz
,
T.
,
Antal
,
Z.
,
Kresz
,
N.
,
Bor
,
Z.
, and
Chrisey
,
D. B.
, 2004, “
Absorbing Film Assisted Laser Induced Forward Transfer of Fungi (Trichoderma Conidia)
,”
J. Appl. Phys.
0021-8979,
96
(
6
), pp.
3478
3481
.
8.
Lin
,
Y.
,
Huang
,
Y.
,
Wang
,
G.
,
Tzeng
,
T. J.
, and
Chrisey
,
D. B.
, 2009, “
Effect of Laser Fluence on Yeast Cell Viability in Laser-Assisted Cell Transfer
,”
J. Appl. Phys.
0021-8979,
106
(
4
), p.
043106
.
9.
Gu
,
J.
,
Tay
,
E.
,
Lim
,
P. K.
, and
Lim
,
P.
, 2002, “
Micro-Humps Formed in Excimer Laser Ablation of Polyimide Using Mask Projection System
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
74
(
4
), pp.
487
491
.
10.
Kattamis
,
N. T.
,
Purnick
,
P. E.
,
Weiss
,
R.
, and
Arnold
,
C. B.
, 2007, “
Thick Film Laser Induced Forward Transfer for Deposition of Thermally and Mechanically Sensitive Materials
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
171120
.
11.
Koch
,
L.
,
Kuhn
,
S.
,
Sorg
,
H.
,
Gruene
,
M.
,
Schlie
,
S.
,
Gaebel
,
R.
,
Polchow
,
B.
,
Reimers
,
K.
,
Stoelting
,
S.
,
Ma
,
N.
,
Vogt
,
P.
,
Steinhoff
,
G.
, and
Chichkov
,
B. N.
, 2010, “
Laser Printing of Skin Cells and Human Stem Cells
,”
Tissue Eng. Part C: Methods
1937-3384,
16
(
5
), pp.
847
854
.
12.
Barron
,
J. A.
,
Krizman
,
D. B.
, and
Ringeisen
,
B. R.
, 2005, “
Laser Printing of Single Cells: Statistical Analysis, Cell Viability, and Stress
,”
Ann. Biomed. Eng.
0090-6964,
33
(
2
), pp.
121
130
.
13.
Serra
,
P.
,
Colina
,
M.
,
Fernández-Pradas
,
J. M.
,
Sevilla
,
L.
, and
Morenza
,
J. L.
, 2004, “
Preparation of Functional DNA Microarrays Through Laser-Induced Forward Transfer
,”
Appl. Phys. Lett.
0003-6951,
85
(
9
), pp.
1639
1641
.
14.
Colina
,
M.
,
Duocastella
,
M.
,
Fernández-Pradas
,
J. M.
,
Serra
,
P.
,
Morenza
,
J. L.
, 2006, “
Laser-Induced Forward Transfer of Liquids: Study of the Droplet Ejection Process
,”
J. Appl. Phys.
0021-8979,
99
, p.
084909
.
15.
Doraiswamy
,
A.
,
Narayan
,
R. J.
,
Lippert
,
T.
,
Urech
,
L.
,
Wokaun
,
A.
,
Nagel
,
M.
,
Hopp
,
B.
,
Dinescu
,
M.
,
Modi
,
R.
,
Auyeung
,
R. C. Y.
, and
Chrisey
,
D. B.
, 2006, “
Excimer Laser Forward Transfer of Mammalian Cells Using a Novel Triazene Absorbing Layer
,”
Appl. Surf. Sci.
0169-4332,
252
, pp.
4743
4747
.
16.
Forgue-Lafitte
,
M. E.
,
Coudray
,
A. M.
,
Breant
,
B.
, and
Mester
,
J.
, 1989, “
Proliferation of the Human Colon Carcinoma Cell Line HT-29: Autocrine Growth and Deregulated Expression of the C-Myc Oncogene
,”
Cancer Res.
0008-5472,
49
(
23
), pp.
6566
6571
.
17.
Cahill
,
D. P.
,
Lengauer
,
C.
,
Yu
,
J.
,
Riggins
,
G. J.
,
Willson
,
J. K. V.
,
Markowitz
,
S. D.
,
Kinzler
,
K. W.
, and
Vogelstein
,
B.
, 1998, “
Mutations of Mitotic Checkpoint Genes
,”
Nature (London)
0028-0836,
392
(
6673
), pp.
300
303
.
18.
Oikonomou
,
E.
,
Kothonidis
,
K.
,
Zografos
,
G.
,
Nasioulas
,
G.
,
Andera
,
L.
, and
Pintzas
,
A.
, 2007, “
Newly Established Tumourigenic Primary Human Colon Cancer Cell Lines Are Sensitive to Trail-Induced Apoptosis In Vitro and In Vivo
,”
Br. J. Cancer
0007-0920,
97
, pp.
73
84
.
19.
Yauch
,
R. L.
,
Gould
,
S. E.
,
Scales
,
S. J.
,
Tang
,
T.
,
Tian
,
H.
,
Ahn
,
C. P.
,
Marshall
,
D.
,
Fu
,
L.
,
Januario
,
T.
,
Kallop
,
D.
,
Nannini-Pepe
,
M.
,
Kotkow
,
K.
,
Marsters
,
J. C.
,
Rubin
,
L. L.
, and
de Sauvage
,
F. J.
, 2008, “
A Paracrine Requirement for Hedgehog Signalling in Cancer
,”
Nature (London)
0028-0836,
455
, pp.
406
410
.
20.
Park
,
H. K.
,
Kim
,
D.
,
Grigoropoulos
,
C. P.
, and
Tam
,
A. C.
, 1996, “
Pressure Generation and Measurement in the Rapid Vaporization of Water on a Pulsed-Laser-Heated Surface
,”
J. Appl. Phys.
0021-8979,
80
(
7
), pp.
4072
4081
.
21.
Ko
,
S. H.
,
Ryu
,
S. G.
,
Misra
,
N.
,
Pan
,
H.
,
Grigoropoulos
,
C. P.
,
Kladias
,
N.
,
Panides
,
E.
, and
Domoto
,
G. A.
, 2007, “
Laser Induced Short Plane Acoustic Wave Focusing in Water
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
051128
.
22.
Lee
,
C. Y.
,
Yu
,
H.
,
Hill
,
S. C.
,
Pang
,
W.
, and
Kim
,
E. S.
, 2008, “
Airborne Particle Generation Through Acoustic Ejection of Particles-in-Droplets
,”
Aerosol Sci. Technol.
0278-6826,
42
(
10
), pp.
832
841
.
23.
Willis
,
D. A.
, and
Grosu
,
V.
, 2005, “
Microdroplet Deposition by Laser-Induced Forward Transfer
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
244103
.
24.
Banks
,
D. P.
,
Grivas
,
C.
,
Mills
,
J. D.
,
Eason
,
R. W.
, and
Zergioti
,
I.
, 2006, “
Nanodroplets Deposited in Microarrays by Femtosecond Ti:Sapphire Laser-Induced Forward Transfer
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
193107
.
25.
Vogel
,
A.
,
Noack
,
J.
,
Nahen
,
K.
,
Theisen
,
D.
,
Busch
,
S.
,
Parlitz
,
U.
,
Hammer
,
D. X.
,
Noojin
,
G. D.
,
Rockwell
,
B. A.
, and
Birngruber
,
R.
, 1999, “
Energy Balance of Optical Breakdown in Water at Nanosecond to Femtosecond Time Scales
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
68
(
2
), pp.
271
280
.
26.
Tomita
,
Y.
,
Tsubota
,
M.
, and
Annaka
,
N.
, 2003, “
Energy Evaluation of Cavitation Bubble Generation and Shock Wave Emission by Laser Focusing in Liquid Nitrogen
,”
J. Appl. Phys.
0021-8979,
93
(
5
), pp.
3039
3048
.
27.
Evans
,
R.
,
Camacho-López
,
S.
,
Pérez-Gutiérrez
,
F. G.
, and
Aguilar
,
G.
, 2008, “
Pump-Probe Imaging of Nanosecond Laser-Induced Bubbles in Agar Gel
,”
Opt. Express
1094-4087,
16
(
10
), pp.
7481
7492
.
28.
Vogel
,
A.
,
Linz
,
N.
,
Freidank
,
S.
, and
Paltauf
,
G.
, 2008, “
Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery
,”
Phys. Rev. Lett.
0031-9007,
100
(
3
), p.
038102
.
29.
Hayami
,
S.
, and
Toba
,
J.
, 1958, “
Drop Production by Bursting of Air Bubbles on the Sea Surface (1) Experiments at Still Sea Water Surface
,”
J. Oceanogr. Soc. Jpn.
0029-8131,
14
(
4
), pp.
145
150
.
30.
Günther
,
A.
,
Wälchli
,
S.
, and
von Rohr
,
P. R.
, 2003, “
Droplet Production from Disintegrating Bubbles at Water Surfaces. Single vs. Multiple Bubbles
,”
Int. J. Multiphase Flow
0301-9322,
29
(
5
), pp.
795
811
.
31.
Lin
,
Y.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
, 2009, “
Droplet Formation in Matrix-Assisted Pulsed-Laser Evaporation Direct Writing of Glycerol-Water Solution
,”
J. Appl. Phys.
0021-8979,
105
(
9
), p.
093111
.
32.
Wang
,
W.
,
Huang
,
Y.
,
Grujicic
,
M.
, and
Chrisey
,
D. B.
, 2008, “
Study of Impact-Induced Mechanical Effects in Cell Direct Writing Using Smooth Particle Hydrodynamic Method
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
2
), p.
021012
.
33.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C.
, 1972, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
0006-3495,
12
(
3
), pp.
257
273
.
34.
Thoumine
,
O.
,
Ott
,
A.
, and
Louvard
,
D.
, 1996, “
Critical Centrifugal Forces Induce Adhesion Rupture or Structural Reorganization in Cultured Cells
,”
Cell Motil. Cytoskeleton
0886-1544,
33
(
4
), pp.
276
287
.
You do not currently have access to this content.