In this work, a fluid-solid interaction (FSI) analysis of a healthy and a stenotic human trachea was studied to evaluate flow patterns, wall stresses, and deformations under physiological and pathological conditions. The two analyzed tracheal geometries, which include the first bifurcation after the carina, were obtained from computed tomography images of healthy and diseased patients, respectively. A finite element-based commercial software code was used to perform the simulations. The tracheal wall was modeled as a fiber reinforced hyperelastic solid material in which the anisotropy due to the orientation of the fibers was introduced. Impedance-based pressure waveforms were computed using a method developed for the cardiovascular system, where the resistance of the respiratory system was calculated taking into account the entire bronchial tree, modeled as binary fractal network. Intratracheal flow patterns and tracheal wall deformation were analyzed under different scenarios. The simulations show the possibility of predicting, with FSI computations, flow and wall behavior for healthy and pathological tracheas. The computational modeling procedure presented herein can be a useful tool capable of evaluating quantities that cannot be assessed in vivo, such as wall stresses, pressure drop, and flow patterns, and to derive parameters that could help clinical decisions and improve surgical outcomes.

1.
Levitzky
,
M.
, 2003,
Pulmonary Physiology
, 7th ed.,
McGraw-Hill
,
New York
.
2.
Lyubimov
,
G.
, 2001, “
The Physiological Function of the Posterior Tracheal Wall
,”
Dokl. Biol. Sci.
0012-4966,
380
, pp.
421
423
.
3.
Roberts
,
C.
,
Rains
,
J.
,
Paré
,
P.
,
Walker
,
D.
,
Wiggs
,
B.
, and
Bert
,
J.
, 1997, “
Ultrastructure and Tensile Properties of Human Tracheal Cartilage
,”
J. Biomech.
0021-9290,
31
, pp.
81
86
.
4.
Weibel
,
E.
, 1963,
Morphometry of the Human Lung
,
Academic
,
New York
.
5.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D.
,
Filley
,
G.
, and
Cumming
,
G.
, 1971, “
Model of the Human Bronchial Tree
,”
J. Appl. Physiol.
0021-8987,
31
, pp.
207
217
.
6.
Calay
,
R.
,
Kurujareon
,
J.
, and
Holdo
,
A.
, 2002, “
Numerical Simulation of Respiratory Flow Patterns Within Human Lungs
,”
Respir. Physiol. Neurbiol.
1569-9048,
130
, pp.
201
221
.
7.
Ma
,
B.
, and
Lutchen
,
K.
, 2006, “
An Anatomically Based Hybrid Computational Model of the Human Lung and Its Application to Low Frequency Oscillatory Mechanics
,”
Ann. Biomed. Eng.
0090-6964,
34
(
11
), pp.
1691
1704
.
8.
Nowak
,
N.
,
Kakade
,
P.
, and
Annapragada
,
A.
, 2003, “
Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
374
390
.
9.
Liu
,
Y.
,
So
,
R.
, and
Zhang
,
C.
, 2002, “
Modeling the Bifurcation Flow in a Human Lung Airway
,”
J. Biomech.
0021-9290,
35
, pp.
465
473
.
10.
Liu
,
Y.
,
So
,
R.
, and
Zhang
,
C.
, 2003, “
Modeling the Bifurcation Flow in an Asymmetric Human Lung Airway
,”
J. Biomech.
0021-9290,
36
, pp.
951
959
.
11.
Luo
,
H.
, and
Liu
,
Y.
, 2008, “
Modeling the Bifurcating Flow in a CT-Scanned Human Lung Airway
,”
J. Biomech.
0021-9290,
41
, pp.
2681
2688
.
12.
Nithiarasu
,
P.
,
Hassan
,
O.
,
Morgan
,
K.
,
Weatherill
,
N.
,
Fielder
,
C.
,
Whittet
,
H.
,
Ebden
,
P.
, and
Lewis
,
K.
, 2008, “
Steady Flow Through a Realistic Human Upper Airway Geometry
,”
Int. J. Numer. Methods Fluids
0271-2091,
57
, pp.
631
651
.
13.
Yu
,
G.
,
Zhang
,
Z.
, and
Lessmann
,
R.
, 1996, “
Computer Simulation of the Flow Field and Particle Deposition by Diffusion in a 3-D Human Airway Bifurcation
,”
Aerosol Sci. Technol.
0278-6826,
25
, pp.
338
352
.
14.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2002, “
Transient Airflow Structures and Particle Transport in a Sequentially Branching Lung Airway Model
,”
Phys. Fluids
1070-6631,
14
, pp.
862
880
.
15.
Balásházy
,
I.
,
Heistracher
,
T.
, and
Hoffmann
,
W.
, 1996, “
Airflow and Particle Deposition Patterns in Bronchial Airway Bifurcations: The Effect of Different CFD Models and Bifurcation Geometries
,”
J. Aerosol Med.
,
9
, pp.
287
301
.
16.
Kim
,
C.
, and
Iglesias
,
A.
, 1989, “
Deposition of Inhaled Particles in Bifurcating Airway Models: I. Inspiratory Deposition
,”
J. Aerosol Med.
,
2
, pp.
1
14
.
17.
Kim
,
C.
,
Iglesias
,
A.
, and
Garcia
,
L.
, 1989, “
Deposition of Inhaled Particles in Bifurcating Airway Models: II. Expiratory Deposition
,”
J. Aerosol Med.
,
2
, pp.
15
27
.
18.
Roberts
,
C.
,
Rains
,
J.
,
Paré
,
P.
,
Walker
,
D.
,
Wiggs
,
B.
, and
Bert
,
J.
Ultrastructure and Tensile Properties of Human Tracheal Cartilage
.”
19.
Hazel
,
A.
, and
Heil
,
M.
, 2003, “
Three-Dimensional Airway Reopening: The Steady Propagation of a Semi-Infinite Bubble Into a Buckled Elastic Tube
,”
J. Fluid Mech.
0022-1120,
478
, pp.
47
70
.
20.
Heil
,
M.
, 1999, “
Airway Closure: Liquid Bridges in Strongly Buckled Elastic Tubes
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
487
493
.
21.
Heil
,
M.
, and
White
,
J.
, 2002, “
Airway Closure: Surface-Tension-Driven Non-Axisymmetric Instabilities of Liquid-Lined Elastic Rings
,”
J. Fluid Mech.
0022-1120,
462
, pp.
79
109
.
22.
Wall
,
W.
, and
Rabczuk
,
T.
, 2008, “
Fluid-Structure Interaction in Lower Airways of CT-Based Lung Geometries
,”
Int. J. Numer. Methods Fluids
0271-2091,
57
, pp.
653
675
.
23.
Koombua
,
K.
, and
Pidaparti
,
R.
, 2008, “
Inhalation Induced Stresses and Flow Characteristics in Human Airways Through Fluid-Structure Interaction Analysis
,”
Modelling and Simulation in Engineering
,
2008
, pp.
1
9
.
24.
Malvè
,
M.
,
Pérez del Palomar
,
A.
,
Lopez-Villalobos
,
J.
,
Ginel
,
A.
, and
Doblaré
,
M.
, 2010, “
FSI Analysis of the Coughing Mechanism in a Human Trachea
,”
Ann. Biomed. Eng.
0090-6964,
38
(
4
), pp.
1556
1565
.
25.
Malvè
,
M.
,
Pérez del Palomar
,
A.
,
Trabelsi
,
O.
,
Lopez-Villalobos
,
J. L.
,
Ginel
,
A.
, and
Doblaré
,
M.
, 2010, “
Modeling of the Fluid-Structure Interaction of a Human Trachea Under Different Ventilation Conditions
,”
Int. Commun. Heat Mass Transfer
0735-1933, in press.
26.
Rains
,
J.
,
Bert
,
J.
,
Roberts
,
C.
, and
Paré
,
P.
, 1992, “
Mechanical Properties of Human Tracheal Cartilage
,”
J. Appl. Physiol.
0021-8987,
72
, pp.
219
225
.
27.
Spitzer
,
A.
,
Shaffer
,
T.
, and
Fox
,
W.
, 1992,
Assisted Ventilation: Physiologic Implications and Complications, Fetal and Neonatal Physiology
,
WB Saunders Company
,
Philadelphia
, pp.
812
894
.
28.
Costantino
,
M.
,
Bagnoli
,
P.
,
Dini
,
G.
,
Fiore
,
G.
,
Soncini
,
M.
,
Corno
,
C.
,
Acocella
,
F.
, and
Colombi
,
R.
, 2004, “
A Numerical and Experimental Study of Compliance and Collapsibility of Preterm Lamb Trachea
,”
J. Biomech.
0021-9290,
37
, pp.
1837
1847
.
29.
Begis
,
D.
,
Delpuech
,
C.
,
Tallec
,
P. L.
,
Loth
,
L.
,
Thiriet
,
M.
, and
Vidrascu
,
M.
, 1988, “
A Finite-Element Model of Tracheal Collapse
,”
J. Appl. Physiol.
0021-8987,
64
(
4
), pp.
1359
1368
.
30.
Brouns
,
M.
,
Jayaraju
,
S.
,
Lacor
,
C.
,
Mey
,
J. D.
,
Noppen
,
M.
,
Vincken
,
W.
, and
Verbanck
,
S.
, 2006, “
Tracheal Stenosis: A Fluid Dynamics Study
,”
J. Appl. Physiol.
0021-8987,
102
, pp.
1178
1184
.
31.
Sera
,
T.
,
Satoh
,
S.
,
Horinouchi
,
H.
,
Kobayashi
,
K.
, and
Tanishita
,
K.
, 2003, “
Respiratory Flow in a Realistic Tracheostenosis Model
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
461
471
.
32.
Cebral
,
J.
, and
Summers
,
R.
, 2004, “
Tracheal and Central Bronchial Aerodynamics Using Virtual Bronchoscopy and Computational Fluid Dynamics
,”
IEEE Trans. Med. Imaging
0278-0062,
23
(
8
), pp.
1021
1033
.
33.
Comerford
,
A.
,
Bauer
,
G.
, and
Wall
,
W. A.
, 2010, “
Nanoparticle Transport in a Realistic Model of the Tracheobronchial Region
,”
Int. J. Numer. Methods Biomedical Eng.
,
26
, pp.
904
914
.
34.
Comerford
,
A.
,
Foerster
,
C.
, and
Wall
,
W. A.
, 2010, “
Structured Tree Impedance Outflow Boundary Conditions for 3D Lung Simulations
,”
J. Biomed. Eng.
0141-5425,
132
, p.
081002
.
35.
Wall
,
W. A.
,
Wiechert
,
L.
,
Comerford
,
A.
, and
Rausch
,
S.
, 2010, “
Towards a Comprehensive Computational Model for the Respiratory System
,”
Int. J. Numer. Methods Biomedical Eng.
,
26
(
7
), pp.
807
827
.
36.
Elad
,
D.
,
Shochat
,
A.
, and
Shiner
,
R.
, 1998, “
Computational Model of Oscillatory Airflow in a Bronchial Bifurcation
,”
Respir. Physiol. Neurbiol.
1569-9048,
112
, pp.
95
111
.
37.
Olufsen
,
M.
, 1999, “
A Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
276
, pp.
H257
H268
.
38.
Steele
,
B.
,
Olufsen
,
M.
, and
Taylor
,
C.
, 2007, “
Fractal Network Model for Simulating Abdominal and Lower Extremity Blood Flow During Resting and Exercise Conditions
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
10
(
1
), pp.
39
51
.
39.
Figueroa
,
A.
,
Vignon-Clementel
,
I.
,
Jansen
,
K.
,
Hughes
,
T.
, and
Taylor
,
C.
, 2006, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
5685
5706
.
40.
Spilker
,
R. L.
,
Vignon-Clementel
,
I. E.
,
Kim
,
H. J.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
, 2006, “
Patient-Specific Pulmonary Hemodynamic Simulations Linking Lumped-Parameter Boundary Conditions to Morphometric Data
,”
J. Biomech.
0021-9290,
39
, (
1
), pp.
S294
S295
.
41.
Torii
,
M. O.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T.
, 2010, “
Role of 0d Peripheral Vasculature Model in Fluid-Structure Interaction Modeling of Aneurysms
,”
Comput. Mech.
0178-7675,
46
(
1
), pp.
43
52
.
42.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3776
3796
.
43.
Vignon
,
I. E.
, and
Taylor
,
C. A.
, 2004, “
Outflow Boundary Conditions for One-Dimensional Finite Element Modeling of Blood Flow and Pressure Waves in Arteries
,”
Wave Motion
0165-2125,
39
(
4
), pp.
361
374
.
44.
Jayaraju
,
S.
,
Brouns
,
M.
,
Verbanck
,
S.
, and
Lacor
,
C.
, 2007, “
Fluid Flow and Particle Deposition Analysis in a Realistic Extrathoracic Airway Model Using Unstructured Grids
,”
J. Aerosol Sci.
0021-8502,
38
, pp.
494
508
.
45.
Matida
,
E.
,
Finlay
,
W.
, and
Grgic
,
L.
, 2004, “
Improved Numerical Simulation of Aerosol Deposition in an Idealized Mouth-Throat
,”
J. Aerosol Sci.
0021-8502,
35
, pp.
1
19
.
46.
Bathe
,
K.
, 2006, Theory and Modeling Guide, Vols. I and II: ADINA and ADINA-F.
47.
Gemci
,
T.
,
Ponyavin
,
V.
,
Chen
,
Y.
,
Chen
,
H.
, and
Collins
,
R.
, 2008, “
Computational Model of Airflow in Upper 17 Generations of Human Respiratory Tract
,”
J. Biomech.
0021-9290,
41
, pp.
2047
2054
.
48.
Trabelsi
,
O.
,
del Palomar
,
A. P.
,
López-Villalobos
,
J.
,
Ginel
,
A.
, and
Doblaré
,
M.
, 2010, “
Experimental Characterization and Consitutive Modelling of the Mechanical Behaviour of the Human Trachea
,”
Med. Eng. Phys.
1350-4533,
32
, pp.
76
82
.
49.
Holzapfel
,
G.
,
Gasser
,
T.
, and
Ogden
,
R.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
50.
Lin
,
C.
,
Tawhai
,
M.
,
McLennanc
,
G.
, and
Hoffman
,
E.
, 2007, “
Characteristics of the Turbulent Laryngeal Jet and Its Effect on Airflow in the Human Intra-Thoracic Airways
,”
Respir. Physiol. Neurbiol.
1569-9048,
157
, pp.
295
309
.
51.
Corcoran
,
T.
, and
Chigier
,
N.
, 2000, “
Characterization of the Laryngeal Jet Using Phase Doppler Interferometry
,”
J. Aerosol Med.
,
13
(
2
), pp.
125
137
.
52.
Brouns
,
M.
,
Verbanck
,
S.
, and
Lacor
,
C.
, 2007, “
Influence of Glottic Aperture on the Tracheal Flow
,”
J. Biomech.
0021-9290,
40
, pp.
165
172
.
53.
Olufsen
,
M.
,
Peskins
,
C.
,
Kim
,
W.
,
Pedersen
,
E.
,
Nadim
,
A.
, and
Larsen
,
J.
, 2000, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured Tree Outflow Conditions
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
1281
1299
.
54.
Horsfield
,
K.
, and
Woldenberg
,
M.
, 1989, “
Diameter of Cross Sectional Areas of Branches in the Human Pulmonary Arterial Tree
,”
Anat. Rec.
0003-276X,
223
, pp.
245
251
.
55.
Raabe
,
O.
,
Yeh
,
H.
,
Schum
,
G.
, and
Phalen
,
R.
, 1976, Tracheobronchial Geometry: Human, Dog, Rat, Hamster.
56.
Yeh
,
H.
,
Schum
,
G.
, and
Duggan
,
M.
, 1979, “
Anatomic Models of the Tracheobronchial and Pulmonary Regions of the Rat
,”
Anat. Rec.
0003-276X,
195
, pp.
483
492
.
57.
Latourelle
,
J.
,
Gillis
,
H.
, and
Lutchen
,
R.
, 2001, “
Exact Morphometric Modeling of Rat Lungs for Predicting Mechanical Impedance
,”
Respir. Physiol. Neurbiol.
1569-9048,
127
, pp.
75
85
.
58.
Murray
,
C.
, 1926, “
The Physiological Principle of Minimum Work, the Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
12
, pp.
207
214
.
59.
Iberall
,
A.
, 1967, “
Anatomy and Steady Flow Characteristics of the Arterial System With an Introduction to Its Pulsatile Characteristics
,”
Math. Biosci.
0025-5564,
1
, pp.
375
395
.
60.
Zamir
,
M.
, 2002,
The Physics of Pulsatile Flow
,
Springer-Verlag
,
New York
.
61.
Li
,
Z.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2007, “
Particle Deposition in the Human Tracheobronchial Airways Due to Transient Inspiratory Flow Patterns
,”
J. Aerosol Sci.
0021-8502,
38
, pp.
625
644
.
62.
Habib
,
R.
,
Chalker
,
R.
,
Suki
,
B.
, and
Jackson
,
A.
, 1994, “
Airway Geometry and Wall Mechanical Properties Estimated From Subglottal Input Impedance in Humans
,”
J. Appl. Physiol.
0021-8987,
77
, (
1
), pp.
441
451
.
63.
Comer
,
J.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2001, “
Flow Structures and Particle Deposition Patterns in Double-Bifurcation Airway Models. Part 1. Air Flow Fields
,”
J. Fluid Mech.
0022-1120,
435
, pp.
25
54
.
64.
Comer
,
J.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2001, “
Flow Structures and Particle Deposition Patterns in Double-Bifurcation Airway Models. Part 2. Aerosol Transport and Deposition
,”
J. Fluid Mech.
0022-1120,
435
, pp.
55
80
.
65.
Freitas
,
R.
, and
Schroeder
,
W.
, 2008, “
Numerical Investigation of the Three-Dimensional Flow in a Human Lung Model
,”
J. Biomech.
0021-9290,
41
, pp.
2446
2457
.
66.
Große
,
S.
,
Schroeder
,
W.
,
Klaas
,
M.
,
Kloeckner
,
A.
, and
Roggenkamp
,
J.
2007, “
Time Resolved Analysis of Steady and Oscillating Flow in the Upper Human Airways
,”
Exp. Fluids
0723-4864,
42
, pp.
955
970
.
67.
Adler
,
K.
, and
Brueckner
,
C.
, 2007, “
Dynamic Flow in a Realistic Model of the Upper Human Lung Airways
,”
Exp. Fluids
0723-4864,
43
, pp.
411
423
.
You do not currently have access to this content.