Despite their success, stenting procedures are still associated to some clinical problems like sub-acute thrombosis and in-stent restenosis. Several clinical studies associate these phenomena to a combination of both structural and hemodynamic alterations caused by stent implantation. Recently, numerical models have been widely used in the literature to investigate stenting procedures but always from either a purely structural or fluid dynamic point of view. The aim of this work is the implementation of sequential structural and fluid dynamic numerical models to provide a better understanding of stenting procedures in coronary bifurcations. In particular, the realistic geometrical configurations obtained with structural simulations were used to create the fluid domains employed within transient fluid dynamic analyses. This sequential approach was applied to investigate the final kissing balloon (FKB) inflation during the provisional side branch technique. Mechanical stresses in the arterial wall and the stent as well as wall shear stresses along the arterial wall were examined before and after the FKB deployment. FKB provoked average mechanical stresses in the arterial wall almost 2.5 times higher with respect to those induced by inflation of the stent in the main branch only. Results also enlightened FKB benefits in terms of improved local blood flow pattern for the side branch access. As a drawback, the FKB generates a larger region of low wall shear stress. In particular, after FKB the percentage of area characterized by wall shear stresses lower than 0.5 Pa was 79.0%, while before the FKB it was 62.3%. For these reasons, a new tapered balloon dedicated to bifurcations was proposed. The inclusion of the modified balloon has reduced the mechanical stresses in the proximal arterial vessel to 40% and the low wall shear stress coverage area to 71.3%. In conclusion, these results show the relevance of the adopted sequential approach to study the wall mechanics and the hemodynamics created by stent deployment.

References

References
1.
Garg
,
S.
, and
Serruys
,
P.
, 2010, “
Coronary Stents: Current Status
,”
J. Am. Coll. Cardiol.
,
56
, pp.
S1
S42
.
2.
Edelman
,
E. R.
, and
Rogers
,
C.
, 1998, “
Pathobiologic Responses to Stenting
,”
Am. J. Cardiol.
,
81
, pp.
4E
6E
.
3.
Wentzel
,
J. J.
,
Kloet
,
J.
,
Andhyiswara
,
I.
,
Oomen
,
J. A.
,
Schuurbiers
,
J. C.
,
de Smet
,
B. J.
,
Post
,
M. J.
,
De Kleijn
,
D.
,
Pasterkamp
,
G.
,
Borst
,
C.
,
Slager
,
C. J.
, and
Krams
,
R.
, 2001, “
Shear-Stress and Wall-Stress Regulation of Vascular Remodeling After Balloon Angioplasty
,”
Circulation
,
104
, pp.
91
96
.
4.
Kraiss
,
L. W.
,
Geary
,
R. L.
,
Mattsson
,
E. J.
,
Vergel
,
S.
,
Au
,
A. Y.
, and
Clowes
,
A. W.
, 1996, “
Acute Reductions in Blood Flow and Shear Stress Induce Platelet-Derived Growth Factor-A Expression in Baboon Prosthetic Grafts
,”
Circ. Res.
,
79
, pp.
45
53
.
5.
Mondy
,
J. S.
,
Lindner
,
V.
,
Miyashiro
,
J. K.
,
Berk
,
B. C.
,
Dean
,
R. H.
, and
Geary
,
R. L.
, 1997, “
Platelet-Derived Growth Factor Ligand and Receptor Expression in Response to Altered Blood Flow In Vivo
,”
Circ. Res.
,
81
pp.
320
327
.
6.
Sanmartín
,
M.
,
Goicolea
,
J.
,
García
,
C.
,
García
,
J.
,
Crespo
,
A.
,
Rodríguez
,
J.
, and
Goicolea
,
J. M.
, 2006, “
Influence of Shear Stress on In-Stent Restenosis: In Vivo Study Using 3D Reconstruction and Computational Fluid Dynamics
,”
Rev. Esp. Cardiol.
,
59
, pp.
20
27
.
7.
Topper
,
J. N.
,
Cai
,
J.
,
Falb
,
D.
, and
Gimbrone
,
M. A.
, 1996, “
Identification of Vascular Endothelial Genes Differentially Responsive to Fluid Mechanical Stimuli: Cyclooxygenase-2, Manganese Superoxide Dismutase, and Endothelial Cell Nitric Oxide Synthase are Selectively Upregulated by Steady Laminar Shear Stress
,”
Proc. Natl. Acad. Sci. U.S.A.
,
93
, pp.
10417
10422
.
8.
Uematsu
,
M.
,
Ohara
,
Y.
,
Navas
,
J. P.
,
Nishida
,
K.
,
Murphy
,
T. J.
,
Alexander
,
R. W.
,
Nerem
,
R. M.
, and
Harrison
,
D. G.
, 1995, “
Regulation of Endothelial Cell Nitric Oxide Synthase mRNA Expression by Shear Stress
,”
Am J. Physiol. Cell. Physiol.
,
269(6)
, pp.
C1371
C1378
.
9.
Latib
,
A.
, and
Colombo
,
A.
, 2008, “
Bifurcation Disease: What do we Know, What Should we do?
,”
J. Am. Coll. Cardiol. Int.
,
1
, pp.
218
226
.
10.
Colombo
,
A.
,
Bramucci
,
E.
,
Sacca
,
S.
,
Violini
,
R.
,
Lettieri
,
C.
,
Zanini
,
R.
,
Sheiban
,
I.
,
Paloscia
,
L.
,
Grube
,
E.
,
Schofer
,
J.
,
Bolognese
,
L.
,
Orlandi
,
M.
,
Niccoli
,
G.
,
Latib
,
A.
, and
Airoldi
,
F.
, 2009, “
Randomized Study of the Crush Technique Versus Provisional Side-Branch Stenting in True Coronary Bifurcations: The CACTUS (Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents) Study
”,
Circulation
,
119
, pp.
71
78
.
11.
Balossino
,
R.
,
Gervaso
,
F.
,
Migliavacca
F.
, and
Dubini
,
G.
, 2008, “
Effects of Different Stent Designs on Local Hemodynamics in Stented Arteries
,”
J. Biomech.
,
41
(
5
), pp.
1053
1061
.
12.
Martin
,
D.
, and
Boyle
,
F. J.
, 2010, “
Computational Structural Modelling of Coronary Stent Deployment: A Review
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
4
), pp.
331
348
.
13.
Murphy
,
J.
, and
Boyle
,
F.
, 2010, “
Predicting Neointimal Hyperplasia in Stented Arteries Using Time-Dependant Computational Fluid Dynamics: A Review
,”
Comput. Biol. Med.
,
40
(
4
), pp.
408
418
.
14.
Berry
,
J. L.
,
Santamarina
,
A.
,
Moore
,
J. E.
,
Roychowdhury
,
S.
, and
Routh
,
W. D.
, 2000, “
Experimental and Computational Flow Evaluation of Coronary Stents
Ann. Biomed. Eng.
,
28
, pp.
386
398
.
15.
Moore
,
J. E.
, and
Berry
,
J. L.
, 2002, “
Fluid and Solid Mechanical Implications of Vascular Stenting
,”
Ann. Biomed. Eng.
,
30
, pp.
498
508
.
16.
LaDisa
,
J. F.
,
Guler
,
I.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2003, “
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
,”
Ann. Biomed. Eng.
,
31
, pp.
972
980
.
17.
Rajamohan
,
D.
,
Banerjee
,
R. K.
,
Ibrahim
,
A. L.
,
Jog
,
M. A.
, and
Back
,
L. H.
, 2006, “
Developing Pulsatile Flow in a Deployed Coronary Stent
,”
J. Biomech. Eng.
,
128
, pp.
347
359
.
18.
Banerjee
,
R. K.
,
Devarakonda
,
S. B.
,
Rajamohan
,
D.
, and
Back
,
L. H.
, 2007, “
Developed Pulsatile Flow in a Deployed Coronary Stent
,”
Biorheology
,
44
, pp.
91
102
.
19.
Mortier
,
P.
,
Holzapfel
,
G. A.
,
De Beule
,
M.
,
Van Loo
,
D.
,
Taeymans
,
Y.
,
Segers
,
P.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
, 2010, “
A Novel Simulation Strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug–Eluting Stents
,”
Ann. Biomed. Eng.
,
38
, pp.
88
99
.
20.
Gastaldi
,
D.
,
Morlacchi
,
S.
,
Nichetti
,
R.
,
Capelli
,
C.
,
Dubini
,
G.
,
Petrini
,
L.
, and
Migliavacca
,
F.
, 2010, “
Modelling of the Provisional Side-Branch Stenting Approach for the Treatment of Atherosclerotic Coronary Bifurcations: Effects of Stent Positioning
,”
Biomechanics and Modeling in Mechanobiology
,
9
(
5
), pp.
551
561
.
21.
Ormiston
,
J. A.
,
Webster
,
M. W. I.
,
Seifeddin
,
E. L. J.
,
Ruygrok
,
P. N.
,
Stewart
,
J. T.
,
Scott
,
D.
,
Currie
,
E.
,
Panther
,
M. J.
,
Shaw
,
B.
, and
O’Shaughnessy
,
B.
, 2006, “
Drug-Eluting Stents for Coronary Bifurcations: Bench Testing of Provisional Side-Branch Strategies
,”
Cathet. Cardiovasc. Interv.
,
67
, pp.
49
55
.
22.
Kolachalama
,
V. B.
,
Levine
,
E. G.
, and
Edelman
,
E. R.
, 2009
Luminal Flow Amplifies Stent-Based Drug Deposition in Arterial Bifurcations
,”
PLoS ONE
,
4
(
12
):
e8105
.
23.
Williams
,
A. R.
,
Koo
,
B. K.
,
Gundert
,
T. J.
,
Fitzgerald
,
P. J.
, and
LaDisa
,
J. F.
, Jr
., 2010, “
Local Hemodynamic Changes Caused by Main Branch Stent Implantation and Subsequent Virtual Side Branch Balloon Angioplasty in a Representative Coronary Bifurcation
,”
J. Appl. Physiol.
,
109
, pp.
532
540
.
24.
Gundert
,
T. J.
,
Shadden
,
S. C.
,
Williams
,
A. R.
,
Koo
,
B. K.
,
Feinstein
,
J. A.
, and
LaDisa
,
J. F.
, “
A Rapid and Computationally Inexpensive Method to Virtually Implant Current and Next-Generation Stents Into Subject-Specific Computational Fluid Dynamics Models
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1423
1437
.
25.
Wentzel
,
J. J.
,
Gijsen
,
F. J.
,
Schuurbiers
,
J. C.
,
van der Steen
,
A. F.
, and
Serruys
,
P. W.
, 2008, “
The Influence of Shear Stress on In-Stent Restenosis and Thrombosis
,”
Eurointervention
,
4
(
Suppl C
), pp.
27
32
.
26.
Dirksen
,
M. T.
,
van der Wal
,
A. C.
,
van den Berg
,
F. M.
,
van der Loos
,
C. M.
, and
Becker
,
A. E.
, 1998, “
Distribution of Inflammatory Cells in Atherosclerotic Plaques Relates to the Direction of Flow
,”
Circulation
,
98
, pp.
2000
2003
.
27.
Chen
,
S. L.
,
Zhang
,
J. J.
,
Ye
,
F.
,
Chen
,
Y. D.
,
Patel
,
T.
,
Kawajiri
,
K.
,
Lee
,
M.
,
Kwan
,
T. W.
,
MIntz
,
G.
, and
Tan
,
H. C.
, 2008 “
Study Comparing the Double Kissing (DK) Crush With Classical Crush for the Treatment of Coronary Bifurcation Lesions: The DKCRUSH-1 Bifurcation Study With Drug-Eluting Stents
,”
Eur. J. Clin. Invest.
,
38
, pp.
361
371
.
28.
Ormiston
,
J. A.
,
Webster
,
M. W. I.
,
Ruygrok
,
P. N.
,
Stewart
,
J. T.
,
White
,
H. D.
, and
Scott
,
D. S.
, 1999, “
Stent Deformation Following Simulated Side Branch Dilatation: A Comparison of Five Stent Designs
,”
Cathet. Cardiovasc. Interv.
,
47
, pp.
258
264
.
29.
Zunino
,
P.
,
D’Angelo
,
C.
,
Petrini
,
L.
,
Vergara
,
C.
,
Capelli
,
C.
, and
Migliavacca
,
F.
, 2009, “
Numerical Simulation of Drug Eluting Coronary Stents: Mechanics, Fluid Dynamics and Drug Release
,”
Comput. Meth. Appl. Mech. Eng.
,
198
, pp.
3633
3644
.
30.
Pflederer
,
T.
,
Ludwig
,
J.
,
Ropers
,
D.
,
Daniel
,
W. G.
, and
Achenbach
,
S.
, 2006, “
Measurement of Coronary Artery Bifurcation Angles by Multidetector Computed Tomography
,”
Invest. Radiol.
,
41
(
11
), pp.
793
798
.
31.
Lefevre
,
T.
,
Louvard
,
Y.
,
Morice
,
M. C.
,
Dumas
,
P.
,
Loubeyre
,
C.
,
Benslimane
,
A.
,
Premchand
,
R. K.
,
Guillard
,
N.
, and
Piechaud
,
J. F.
, 2000, “
Stenting of Bifurcation Lesions: Classification, Treatments and Results
,”
Cathet. Cardiovasc. Interv.
,
49
, pp.
274
283
.
32.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
, 2005, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modelling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
, pp.
H2048
H2058
.
33.
Nakazawa
,
G.
,
Yazdani
,
S. K.
,
Finn
,
A. V.
,
Vorpahl
,
M.
,
Kolodgie
,
F. D.
, and
Virmani
,
R.
, 2010, “
Pathological Findings at Bifurcation Lesions: The Impact of Flow Distribution on Atherosclerosis and Arterial Healing After Stent Implantation
,”
J. Am. Coll. Cardiol.
,
55
, pp.
1679
1687
.
34.
Loree
,
H. M.
,
Tobias
,
B. J.
,
Gibson
,
L. J.
,
Kamm
,
R. D.
,
Small
,
D. M.
, and
Lee
,
R. T.
, 1994, “
Mechanical Properties of Model Atherosclerotic Lesion Lipid Pool
,”
Arterioscler., Thromb., Vasc. Biol.
,
14
, pp.
230
234
.
35.
Capelli
,
C.
,
Gervaso
,
F.
,
Petrini
,
L.
,
Dubini
,
G.
, and
Migliavacca
,
F.
, 2009, “
Assessment of Tissue Prolapse After Balloon Expandable Stenting: Influence of Stent Cell Geometry
,”
Med. Eng. Phys.
,
31
, pp.
441
447
.
36.
Poncin
,
P.
,
Millet
,
C.
,
Chevy
,
J.
, and
Proft
,
J. L.
, 2004, “
Comparing and Optimizing Co-Cr Tubing for Stent Applications
,”
Proceedings of the Materials and Processes for Medical Devices Conference
.
37.
Seo
,
T.
,
Schachter
,
L. G.
, and
Barakat
,
A. I.
, 2005, “
Computational Study of Fluid Mechanical Disturbance Induced by Endovascular Stents
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
444
456
.
38.
Charonko
,
J.
,
Karri
,
S.
,
Schmieg
,
J.
,
Prabhu
,
S.
, and
Vlachos
,
P.
, 2009, “
In Vitro, Time-Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress
,”
Ann. Biomed. Eng.
,
37
, pp.
1310
1321
.
39.
Quarteroni
,
A.
, and
Veneziani
,
A.
, 2003, “
Analysis of a Geometrical Multiscale Model Based on the Coupling of PDE’s and ODE’s for Blood Flow Simulations
,”
Multiscale Model. Simul.
,
1
(
2
), pp.
173
195
.
40.
Pietrabissa
,
R.
,
Mantero
,
S.
,
Marotta
,
T.
, and
Menicanti
,
L.
, 1996, “
A Lumped Parameter Model to Evaluate the Fluid Dynamics of Different Coronary Bypasses
,”
Med. Eng. Phys.
,
18
(
6
), pp.
477
484
.
41.
Balossino
,
R.
,
Pennati
,
G.
,
Migliavacca
,
F.
,
Formaggia
,
L.
,
Veneziani
,
A.
,
Tuveri
,
M.
, and
Dubini
,
G.
, 2009, “
Computational Models to Predict Stenosis Growth in Carotid Arteries: Which is the Role of Boundary Conditions?
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
1
), pp.
113
123
.
42.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Ann. Rev. Fluid Mech.
,
29
, pp.
399
434
.
43.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and its Role in Atherosclerosis
,”
J. Am. Med. Assoc.
,
282
(
21
), pp.
2035
2042
.
44.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Grigioni
,
M.
, and
Redaelli
,
A.
, 2007, “
Helical Flow as Fluid Dynamic Signature for Atherogenesis Risk in Aortocoronary Bypass. A Numeric Study
,”
J. Biomech.
,
40
, pp.
519
534
.
45.
Guérin
,
P.
,
Pilet
,
P.
,
Finet
,
G.
,
Gouëffic
,
Y.
,
N’Guyen
,
J. M.
,
Crochet
,
D.
,
Tijou
,
I.
,
Pacaud
,
P.
, and
Loirand
,
G.
, 2010, “
Drug-Eluting Stents in Bifurcations: Bench Study of Strut Deformation and Coating Lesions
,”
Circ. Cardiovasc. Interv.
,
3
, pp.
120
126
.
46.
Perktold
,
K.
,
Hofer
,
M.
,
Rappitsch
,
G.
,
Loew
,
M.
,
Kuban
,
B. D.
, and
Friedman
,
M. H.
, 1998, “
Validated Computation of Physiologic Flow in a Realistic Coronary Artery Branch
,”
J. Biomech.
,
31
, pp.
217
228
.
47.
de Bruyne
,
B.
,
Bartunek
,
J.
,
Sys
,
S. U.
,
Pijls
,
N. H. J.
,
Heyndrickx
,
G. R.
, and
Wijns
,
W.
, 1996, “
Simultaneous Coronary Pressure and Flow Velocity Measurements in Humans
,”
Circulation
,
94
, pp.
1842
1849
.
48.
Sakuma
,
H.
,
Kawada
,
N.
,
Takeda
,
K.
, and
Higgins
,
C. B.
, 1999, “
MR Measurement of Coronary Blood Flow
,”
J. Magn. Reson. Imaging
,
10
, pp.
728
733
.
49.
Kessler
,
W.
,
Moshage
,
W.
,
Galland
,
A.
,
Zink
,
D.
,
Achenbanch
,
S.
,
Nitzi
,
W.
,
Laubi
,
G.
, and
Bachmann
,
K.
, 1998, “
Assessment of Coronary Blood Flow in Humans Using Phase Difference MR Imaging. Comparison With Intracoronary Doppler Flow Measurement
,”
Int. J. Card. Imaging
,
14
, pp.
179
186
.
50.
Prosi
,
M.
,
Perktold
,
K.
,
Ding
,
Z.
, and
Friedmanc
,
M. H.
, 2004, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
,
37
, pp.
1767
1775
.
You do not currently have access to this content.