Computational fluid dynamics (CFD) simulations allow for calculation of a detailed flow field in the mouse aorta and can thus be used to investigate a potential link between local hemodynamics and disease development. To perform these simulations in a murine setting, one often needs to make assumptions (e.g. when mouse-specific boundary conditions are not available), but many of these assumptions have not been validated due to a lack of reference data. In this study, we present such a reference data set by combining high-frequency ultrasound and contrast-enhanced micro-CT to measure (in vivo) the time-dependent volumetric flow waveforms in the complete aorta (including seven major side branches) of 10 male ApoE -/- deficient mice on a C57Bl/6 background. In order to assess the influence of some assumptions that are commonly applied in literature, four different CFD simulations were set up for each animal: (i) imposing the measured volumetric flow waveforms, (ii) imposing the average flow fractions over all 10 animals, presented as a reference data set, (iii) imposing flow fractions calculated by Murray’s law, and (iv) restricting the geometrical model to the abdominal aorta (imposing measured flows). We found that – even if there is sometimes significant variation in the flow fractions going to a particular branch – the influence of using average flow fractions on the CFD simulations is limited and often restricted to the side branches. On the other hand, Murray’s law underestimates the fraction going to the brachiocephalic trunk and strongly overestimates the fraction going to the distal aorta, influencing the outcome of the CFD results significantly. Changing the exponential factor in Murray’s law equation from 3 to 2 (as suggested by several authors in literature) yields results that correspond much better to those obtained imposing the average flow fractions. Restricting the geometrical model to the abdominal aorta did not influence the outcome of the CFD simulations. In conclusion, the presented reference dataset can be used to impose boundary conditions in the mouse aorta in future studies, keeping in mind that they represent a subsample of the total population, i.e., relatively old, non-diseased, male C57Bl/6 ApoE -/- mice.

References

References
1.
Trachet
,
B.
,
Renard
,
M.
,
De Santis
,
G.
,
Staelens
,
S.
,
De Backer
,
J.
,
Antiga
,
L.
,
Loeys
,
B.
, and
Segers
,
P.
, 2011, “
An Integrated Framework to Quantitatively Link Mouse-Specific Hemodynamics to Aneurysm Formation in Angiotensin Ii-Infused Apoe -/- Mice
,”
Ann. Biomed. Eng.
,
39
(
9
), pp.
2430
2444
.
2.
Suo
,
J.
,
Ferrara
,
D. E.
,
Sorescu
,
D.
,
Guldberg
,
R. E.
,
Taylor
,
W. R.
, and
Giddens
,
D. P.
, 2007, “
Hemodynamic Shear Stresses in Mouse Aortas - Implications for Atherogenesis
,”
Arterioscler., Thromb., Vasc. Biol.
,
27
(
2
), pp.
346
351
.
3.
Zhu
,
H.
,
Zhang
,
J.
,
Shih
,
J.
,
Lopez-Bertoni
,
F.
,
Hagaman
,
J. R.
,
Maeda
,
N.
, and
Friedman
,
M. H.
, 2009, “
Differences in Aortic Arch Geometry, Hemodynamics, and Plaque Patterns between C57bl/6 and 129/Svev Mice
,”
J. Biomech. Eng.
,
131
(
12
), p.
121005
.
4.
Greve
,
J. M.
,
Les
,
A. S.
,
Tang
,
B. T.
,
Blomme
,
M. T. D.
,
Wilson
,
N. M.
,
Dalman
,
R. L.
,
Pelc
,
N. J.
, and
Taylor
,
C. A.
, 2006, “
Allometric Scaling of Wall Shear Stress from Mice to Humans: Quantification Using Cine Phase-Contrast Mri and Computational Fluid Dynamics
,”
Am. J. Physiol. Heart Circ. Physiol.
291
(
4
), pp.
H1700
H1708
.
5.
Trachet
,
B.
,
Swillens
,
A.
,
Van Loo
,
D.
,
Casteleyn
,
C.
,
De Paepe
,
A.
,
Loeys
,
B.
, and
Segers
,
P.
, 2009, “
The Influence of Aortic Dimensions on Calculated Wall Shear Stress in the Mouse Aortic Arch
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
5
), pp.
491
499
.
6.
Feintuch
,
A.
,
Ruengsakulrach
,
P.
,
Lin
,
A.
,
Zhang
,
J.
,
Zhou
,
Y. Q.
,
Bishop
,
J.
,
Davidson
,
L.
,
Courtman
,
D.
,
Foster
,
F. S.
,
Steinman
,
D. A.
,
Henkelman
,
R. M.
, and
Ethier
,
C. R.
, 2007, “
Hemodynamics in the Mouse Aortic Arch as Assessed by Mri, Ultrasound, and Numerical Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
2
), pp.
H884
H892
.
7.
Murray
,
C. D.
, 1926, “
The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. USA
,
12
(
3
), pp.
207
214
.
8.
Soulis
,
J.
,
Giannoglou
,
G.
,
Dimitrakopoulou
,
M.
,
Papaioannou
,
V.
,
Logothetides
,
S.
, and
Mikhailidis
,
D.
, 2009, “
Influence of Oscillating Flow on Ldl Transport and Wall Shear Stress in the Normal Aortic Arch
,”
Open Cardiovasc. Med. J.
,
3
, pp.
128
142
.
9.
Groen
,
H. C.
,
Simons
,
L.
,
Van Den Bouwhuijsen
,
Q. J. A.
,
Bosboom
,
E. M. H.
,
Gijsen
,
F. J. H.
,
Van Der Giessen
,
A. G.
,
Van De Vosse
,
F. N.
,
Hofman
,
A.
,
Van Der Steen
,
A. F. W.
,
Witteman
,
J. C. M.
,
Van Der Lugt
,
A.
, and
Wentzel
,
J. J.
, 2010, “
Mri-Based Quantification of Outflow Boundary Conditions for Computational Fluid Dynamics of Stenosed Human Carotid Arteries
,”
J. Biomech.
,
43
(
12
), pp.
2332
2338
.
10.
Vincent
,
P. E.
,
Plata
,
A. M.
,
Hunt
,
A. A.
,
Weinberg
,
P. D.
, and
Sherwin
,
S. J.
, 2011, “
Blood Flow in the Rabbit Aortic Arch and Descending Thoracic Aorta
,”
J. R. Soc., Interface
,
8
(
65
), pp.
1708
1719
.
11.
Vandeghinste
,
B.
,
Trachet
,
B.
,
Renard
,
M.
,
Casteleyn
,
C.
,
Staelens
,
S.
,
Loeys
,
B.
,
Segers
,
P.
, and
Vandenberghe
,
S.
, 2011, “
Replacing Vascular Corrosion Casting by in Vivo Micro-Ct Imaging for Building 3d Cardiovascular Models in Mice
,”
Mol. Imaging Biol.
,
13
(
1
), pp.
78
86
.
12.
Hoi
,
Y.
,
Zhou
,
Y.-Q.
,
Zhang
,
X.
,
Henkelman
,
R.
, and
Steinman
,
D.
, 2011, “
Correlation between Local Hemodynamics and Lesion Distribution in a Novel Aortic Regurgitation Murine Model of Atherosclerosis
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1414
1422
.
13.
Willett
,
N. J.
,
Long
,
R. C.
,
Maiellaro-Rafferty
,
K.
,
Sutliff
,
R. L.
,
Shafer
,
R.
,
Oshinski
,
J. N.
,
Giddens
,
D. P.
,
Guldberg
,
R. E.
, and
Taylor
,
W. R.
, 2010, “
An in Vivo Murine Model of Low-Magnitude Oscillatory Wall Shear Stress to Address the Molecular Mechanisms of Mechanotransduction—Brief Report
,”
Arterioscler., Thromb., Vasc. Biol.
,
30
(
11
), pp.
2099
2102
.
14.
De Santis
,
G.
,
De Beule
,
M.
,
Segers
,
P.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
, 2011, “
Patient-Specific Computational Haemodynamics: Generation of Structured and Conformal Hexahedral Meshes from Triangulated Surfaces of Vascular Bifurcations
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
9
), pp.
797
802
.
15.
De Santis
,
G.
,
Mortier
,
P.
,
De Beule
,
M.
,
Segers
,
P.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
, 2010, “
Patient-Specific Computational Fluid Dynamics: Structured Mesh Generation from Coronary Angiography
,”
Med. Biol. Eng. Comput.
,
48
(
4
), pp.
371
380
.
16.
De Santis
,
G.
,
De Beule
,
M.
,
Van Canneyt
,
K.
,
Segers
,
P.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
, “
Full-Hexahedral Structured Meshing for Image-Based Computational Vascular Modeling
,”
Med. Eng. Phys.
(in press).
17.
Cheng
,
C.
,
Helderman
,
F.
,
Tempel
,
D.
,
Segers
,
D.
,
Hierck
,
B.
,
Poelmann
,
R.
,
Van Tol
,
A.
,
Duncker
,
D. J.
,
Robbers-Visser
,
D.
,
Ursem
,
N. T. C.
,
Van Haperen
,
R.
,
Wentzel
,
J. J.
,
Gijsen
,
F.
,
Van Der Steen
,
A. F. W.
,
De Crom
,
R.
, and
Krams
,
R.
, 2007, “
Large Variations in Absolute Wall Shear Stress Levels within One Species and between Species
,”
Atherosclerosis
,
195
, pp.
225
235
.
18.
Reneman
,
R. S.
, and
Hoeks
,
A. P. G.
, 2008, “
Wall Shear Stress as Measured in Vivo: Consequences for the Design of the Arterial System
,”
Med. Biol. Eng. Comput.
,
46
(
5
), pp.
499
507
.
19.
Sang-Wook
,
L.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2009, “
Correlations among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
J. Biomech. Eng.
,
131(6)
, p.
061013
.
20.
Murphy
,
J. B.
, and
Boyle
,
F. J.
, 2010, “
A Full-Range, Multi-Variable, CFD-Based Methodology to Identify Abnormal near-Wall Hemodynamics in a Stented Coronary Artery
,”
Biorheology
,
47
(
2
), pp.
117
132
.
21.
Cohen
,
J.
, 1988,
Statistical Power Analysis for the Behavioral Sciences
,
L. Erlbaum Associates
,
Hillsdale, N.J
.
22.
Hedges
,
L. V.
, 1985,
Statistical Methods for Meta-Analysis/Larry V. Hedges, Ingram Olkin
,
Academic Press
,
Orlando
.
23.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
pp.
69
94
.
24.
Kassab
,
G. S.
, and
Fung
,
Y. C.
, 1995, “
The Pattern of Coronary Arteriolar Bifurcations and the Uniform Shear Hypothesis
,”
Ann. Biomed. Eng.
,
23
(
1
), pp.
13
20
.
25.
Barakat
,
A. I.
,
Lieu
,
D. K.
, and
Gojova
,
A.
, 2006, “
Secrets of the Code: Do Vascular Endothelial Cells Use Ion Channels to Decipher Complex Flow Signals?
,”
Biomaterials
,
27
(
5
), pp.
671
678
.
26.
Mazzag
,
B. M.
,
Tamaresis
,
J. S.
, and
Barakat
,
A. I.
, 2003, “
A Model for Shear Stress Sensing and Transmission in Vascular Endothelial Cells
,”
Biophys. J.
,
84
(
6
), pp.
4087
4101
.
27.
West
,
G. B.
,
Brown
,
J. H.
, and
Enquist
,
B. J.
, 1997, “
A General Model for the Origin of Allometric Scaling Laws in Biology
,”
Science
,
276
(
5309
), pp.
122
126
.
28.
Friedman
,
M. H.
, 2009, “
Variability of Arterial Wall Shear Stress, Its Dependence on Vessel Diameter and Implications for Murray’s Law
,”
Atherosclerosis
,
203
(
1
), pp.
47
48
.
29.
Painter
,
P. R.
,
Eden
,
P.
, and
Bengtsson
,
H. U.
, 2006, “
Pulsatile Blood Flow, Shear Force, Energy Dissipation and Murray’s Law
,”
Theor. Biol. Med. Model
,
3
, pp.
31
38
.
30.
Casteleyn
,
C.
,
Trachet
,
B.
,
Van Loo
,
D.
,
Devos
,
D. G.
,
Van Den Broeck
,
W.
,
Simoens
,
P.
, and
Cornillie
,
P.
, 2010, “
Validation of the Murine Aortic Arch as a Model to Study Human Vascular Diseases
,”
J. Anat.
,
216
(
5
), pp.
563
571
.
You do not currently have access to this content.