A comparative experimental study of the velocity field and the strain field produced down-stream of biological and mechanical artificial valves is presented. In order to determine the spatial and temporal distributions of these fields, a phase-locked stereoscopic particle image velocimetry (or 3D-PIV) technique was implemented. Emphasis was placed on the identification of the fundamental differences between the extensional and the shear components of the strain tensor. The analysis of the characteristic flows reveal that the strains in every direction may reach high values at different times during the cardiac cycle. It was found that elevated strain levels persist throughout the cardiac cycle as a result of all these contributions. Finally, it is suggested that the frequency with which the strain variations occur at particular instants and locations could be associated to the cumulative damage process of the blood constituents and should be taken into account in the overall assessment of existing valve types, as well as in future design efforts.

References

References
1.
Yoganathan
,
A.
,
He
,
Z.
, and
Jones
,
S.
, 2004, “
Fluid Mechanics of Heart Valves
,”
Annu. Rev. Biomed. Eng.
,
6
, pp.
331
362
.
2.
Einav
,
S.
, and
Bluestein
,
D.
, 2004, “
Dynamics of Blood Flow and Platelets Transport in Pathological Vessels
,”
Ann. N.Y. Acad. Sci.
,
1015
, pp.
351
366
.
3.
Sallam
,
A. M.
, and
Hwang
,
N. H. C.
, 1984, “
Human Red Blood Hemolysis in a Trubulent Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
,
21
, pp.
783
797
.
4.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
, 1990, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Protheses -In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.
5.
Kroll
,
M.
,
Hellums
,
J.
,
Mclntire
,
L.
,
Schafer
,
A.
, and
Moake
,
J.
, 1996, “
Platelets and Shear Stress
,”
J. Am. Soc. Hematol.
,
88
(
5
), pp.
1525
1541
.
6.
Hellums
,
D.
, 1994, “
1993 Whitaker Lecture: Biorheology in Thrombosis Research
,”
Ann. Biomed. Eng.
,
22
, pp.
445
455
.
7.
Schneider
,
S.
,
Nuschele
,
S.
,
Wixforth
,
A.
,
Gorzelanny
,
C.
,
Alexander-Katz
,
A.
,
Netz
,
R.
, and
Schneider
,
M.
, 2007, “
Shear-Induced Unfolding Triggers Adhesion of von Willebrand Factor Fibers
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
19
), pp.
7899
7903
.
8.
Bluestein
,
D.
,
Yin
,
W.
,
Perrota
,
P.
, and
Jetsy
,
J.
, 2004, “
Flow-Induced Platelete Activation in MHV
,”
J. Heart Valve Dis
,
13
(
3
), pp.
501
508
.
9.
Yin
,
W.
,
Alemu
,
Y.
,
Affeld
,
K.
,
Jesty
,
J.
, and
Bluestien
,
D.
, 2004, “
Flow-Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves
,”
Ann. Biomed. Eng.
,
32
(
8
), pp.
1058
1066
.
10.
Hanle
,
D. D.
,
Harrison
,
E. C.
,
Yoganathan
,
A. P.
,
Allen
,
D. T.
, and
Corcoran
,
W. H.
, 1989, “
In Vitro Flow Dynamics of Four Prosthetic Aortic Valves: A Comparative Analysis
,”
J. Biomech.
,
22(6)
, pp.
597
607
.
11.
Chandran
,
K. B.
,
Khalighi
,
B.
, and
Chen
,
C. J.
, 1985, “
Experimental Study of Physiological Pulsatile Flow Past Valve Protheses in a Model of Human Aorta—II. Tilting Disc Valves and the Effect of Orientation
,”
J. Biomech.
,
18
(
10
), pp.
773
780
.
12.
Zimmer
,
R.
,
Steegers
,
A.
,
Paul
,
R.
,
Affeld
,
K.
, and
Reul
,
H.
, 2000, “
Velocities, Shear Stresses and Blood Damage Potential of the Leakage Jets of the Meditronic Parallel Bileaflet Valve
,”
Int. J. Artif. Organs
,
23
(
1
), pp.
41
48
.
13.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2003, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
,
27
(
9
), pp.
840
846
.
14.
Kaminsky
,
R.
,
Kallweit
,
S.
,
Weber
,
H. J.
,
Claessens
,
T.
,
Jozwik
,
K.
, and
Verdnock
,
P.
, 2007, “
Flow Visualization Through Two Types of Aortic Prosthetic Hear Valves Using Stereoscopic High-Speed Particle Image Velocitmetry
,”
Artif. Organs
,
31
(
12
), pp.
869
879
.
15.
Lim
,
W. L.
,
Chew
,
Y. T.
,
Chew
,
T. C.
, and
Low
,
H. T.
, 1997, “
Steady Flow Velocity Field and Turbulent Stress Mappings Downstream of a Porcine Bioprosthetic Aortic Valve In Vitro
,”
Ann. Biomed. Eng.
,
25
, pp.
86
95
.
16.
Lim
,
W. L.
,
Chew
,
Y. T.
,
Chew
,
T. C.
, and
Low
,
H. T.
, 2001, “
Pulsatile Flow Studies of a Porcine Bioprosthetic Aortic Valve In Vitro: PIV Measurements and Shear-Induced Blood Damage
,”
J. Biomech.
,
34
, pp.
1417
1427
.
17.
Marassi
,
M.
,
Castellini
,
P.
,
Pinotti
,
M.
, and
Scalise
,
L.
, 2004, “
Cardiac Valve Prothesis Flow Performance Measured by 2D and 3D-Stereo Particle Image Velocimetry
,”
Exp. Fluids
,
36
, pp.
176
186
.
18.
Amatya
,
D.
,
Troolin
,
D. R.
, and
Longmire
,
E. K.
, 2009, “
3D3C Velocity Measurements Downstream of Artificial Heart Valves
,”
8th International Symposium on Particle Image Velocimetry
.
19.
Reyes
,
M. A.
, 2005, Hydrodynamics of Deformable Objects in Creeping Flows, Ph.D. dissertation, Universidad Nacional Autónoma de México, Mexico City, Mexico.
20.
Grigioni
,
M.
,
Morbiducci
,
U.
,
D’Avenio
,
G.
,
Di Benedetto
,
G.
, and
Del Gaudio
,
C.
, 2005, “
A Novel Formulation for Bblood Trauma Prediction by a Modified Power-Law Mathematical Model
,”
Biomech. Model. Mechanobiol.
,
4
(
4
), pp.
249
260
.
21.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
D’Avenio
,
G.
,
Di Benedetto
,
G.
, and
Barbaro
,
V.
, 2004, “
The Power-Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies
,”
Artif. Organs
,
28
(
5
), pp.
467
475
.
22.
Gu
,
L.
, and
Smith
,
W. A.
, 2005, “
Evaluation of Computational Model for Hemolysis Estimation
,”
ASAIO J.
,
51
(
3
), pp.
202
207
.
23.
Fung
,
Y.
, 1997,
Biomechanics:Circulation
,
2nd ed.
,
Springer
,
New York
.
24.
Diourt
,
B.
,
Sich
,
J.
,
Comparat
,
V.
,
Baguet
,
J.
, and
Mallion
,
J.
, 1999, “
Study of Arterial Blood Pressure by a Windkessel-Type Model: Influence of Arterial Functional Properties
,”
Comput. Methods Programs Biomed.
,
60
, pp.
11
22
.
25.
Sequeira
,
A.
, and
Janela
,
J.
, 2007, “
An Overview of Some Mathematical Model of Blood Rheology
,”
A Portrait of State-of-the-Art Research at the Technical University of Lisbon
,
Springer
,
New York
, pp.
65
87
.
26.
Strackee
,
J.
, and
Westerhof
,
N.
, 1993,
Medical Science Series: The Physics of Heart and Circulation
,
1st ed.
,
Institute of Physics Publishing
,
Bristol, U.K
.
27.
Özcan
,
O.
,
Meyer
,
K. E.
, and
Larsen
,
P. S.
, 2005, “
Measurement of Mean Rotation and Strain-Rate Tensors by Using Stereoscopic PIV
,”
Exp. Fluids
,
39
, pp.
771
783
.
28.
Holman
,
J. P.
, 1994,
Experimental Methods for Engineers
,
6th ed.
,
McGraw-Hill
,
New York.
29.
Lourenco
,
L.
, and
Krothapalli
,
A.
, 1995, “
On the Accuracy of Velocity and Vorticity Measurements With PIV
,”
Exp. Fluids
,
18
, pp.
421
428
.
30.
Alonso
,
C.
,
Pries
,
A. R.
, and
Gaehtgens
,
P.
, 1993, “
Time-Dependent Rhelogical Behavior of Blood at Low Shear in Narrow Vertical Tubes
,”
Am. J. Physiol. Heart Circ. Physiol.
,
265
, pp.
H553
H561
.
31.
Barshtein
,
G.
,
Wajnblum
,
D.
, and
Yedgar
,
S.
, 2000, “
Kinetics of Linear Rouleaux Formation Studied by Visual Monitoring of Red Cell Dynamic Organization
,”
Biophys. J.
,
78
, pp.
2470
2474
.
32.
Barthés-Biesel
,
D.
, 2011, “
Modelling the Motion of Capsules in Flow
,”
Curr. Opin. Colloid Interface Sci.
,
16
, pp.
3
12
.
33.
Dasi
,
L.
,
Ge
,
L.
,
Simon
,
H.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A.
, 2007, “
Vorticity Dynamics of a Bileaflet Mechanical Heart Valve in an Axisymmetric Aorta
,”
Phys. Fluids
,
19
, pp.
1
17
.
You do not currently have access to this content.