The use of biplanar videoradiography technology has become increasingly popular for evaluating joint function in vivo. Two fundamentally different methods are currently employed to reconstruct 3D bone motions captured using this technology. Marker-based tracking requires at least three radio-opaque markers to be implanted in the bone of interest. Markerless tracking makes use of algorithms designed to match 3D bone shapes to biplanar videoradiography data. In order to reliably quantify in vivo bone motion, the systematic error of these tracking techniques should be evaluated. Herein, we present new markerless tracking software that makes use of modern GPU technology, describe a versatile method for quantifying the systematic error of a biplanar videoradiography motion capture system using independent gold standard instrumentation, and evaluate the systematic error of the W.M. Keck XROMM Facility’s biplanar videoradiography system using both marker-based and markerless tracking algorithms under static and dynamic motion conditions. A polycarbonate flag embedded with 12 radio-opaque markers was used to evaluate the systematic error of the marker-based tracking algorithm. Three human cadaveric bones (distal femur, distal radius, and distal ulna) were used to evaluate the systematic error of the markerless tracking algorithm. The systematic error was evaluated by comparing motions to independent gold standard instrumentation. Static motions were compared to high accuracy linear and rotary stages while dynamic motions were compared to a high accuracy angular displacement transducer. Marker-based tracking was shown to effectively track motion to within 0.1 mm and 0.1 deg under static and dynamic conditions. Furthermore, the presented results indicate that markerless tracking can be used to effectively track rapid bone motions to within 0.15 deg for the distal aspects of the femur, radius, and ulna. Both marker-based and markerless tracking techniques were in excellent agreement with the gold standard instrumentation for both static and dynamic testing protocols. Future research will employ these techniques to quantify in vivo joint motion for high-speed upper and lower extremity impacts such as jumping, landing, and hammering.

References

References
1.
Bey
,
M. J.
,
Brock
,
S. K.
,
Beierwaltes
,
W. N.
,
Zauel
,
R.
,
Kolowich
,
P. A.
, and
Lock
,
T. R.
, 2007, “
In Vivo Measurement of Subacromial Space Width During Shoulder Elevation: Technique and Preliminary Results in Patients Following Unilateral Rotator Cuff Repair
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
7
), pp.
767
773
.
2.
Bey
,
M. J.
,
Kline
,
S. K.
,
Zauel
,
R.
,
Lock
,
T. R.
, and
Kolowich
,
P. A.
, 2008, “
Measuring Dynamic In-Vivo Glenohumeral Joint Kinematics: Technique and Preliminary Results
,”
J. Biomech.
,
41
(
3
), pp.
711
714
.
3.
Martin
,
D. E.
,
Greco
,
N. J.
,
Klatt
,
B. A.
,
Wright
,
V. J.
,
Anderst
,
W. J.
, and
Tashman
,
S.
, 2011, “
Model-Based Tracking of the Hip: Implications for Novel Analyses of Hip Pathology
,”
J. Arthroplasty
,
26
(
1
), pp.
88
97
.
4.
Tashman
,
S.
, and
Anderst
,
W.
, 2003, “
In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,”
J. Biomech. Eng.
,
125
(
2
), pp.
238
245
.
5.
Tashman
,
S.
,
Kolowich
,
P.
,
Collon
,
D.
,
Anderson
,
K.
, and
Anderst
,
W.
, 2007, “
Dynamic Function of the ACL-Reconstructed Knee During Running
,”
Clin. Orthop. Relat. Res.
,
454
, pp.
66
73
.
6.
Torry
,
M. R.
,
Myers
,
C.
,
Pennington
,
W. W.
,
Shelburne
,
K. B.
,
Krong
,
J. P.
,
Giphart
,
J. E.
,
Steadman
,
J. R.
, and
Woo
,
S. L. -Y. L.-Y.
, 2010, “
Relationship of Anterior Knee Laxity to Knee Translations During Drop Landings: A Bi-Plane Fluoroscopy Study
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
19
(
4
), pp.
653
662
.
7.
Deneweth
,
J. M.
,
Bey
,
M. J.
,
McLean
,
S. G.
,
Lock
,
T. R.
,
Kolowich
,
P. A.
, and
Tashman
,
S.
, 2010, “
Tibiofemoral Joint Kinematics of the Anterior Cruciate Ligament-Reconstructed Knee During a Single-Legged Hop Landing
,”
Am. J. Sports Med.
,
38
(
9
), pp.
1820
1828
.
8.
Li
,
G.
,
Defrate
,
L. E.
,
Rubash
,
H. E.
, and
Gill
,
T. J.
, 2005, “
In Vivo Kinematics of the ACL During Weight-Bearing Knee Flexion
,”
J. Orthop. Res
,
23
(
2
), pp.
340
344
.
9.
Li
,
G.
,
DeFrate
,
L. E.
,
Sun
,
H.
, and
Gill
,
T. J.
, 2004, “
In Vivo Elongation of the Anterior Cruciate Ligament and Posterior Cruciate Ligament During Knee Flexion
,”
Am. J. Sports Med.
,
32
(
6
), pp.
1415
1420
.
10.
Brainerd
,
E. L.
,
Baier
,
D. B.
,
Gatesy
,
S. M.
,
Hedrick
,
T. L.
,
Metzger
,
K. A.
,
Gilbert
,
S. L.
, and
Crisco
,
J. J.
, 2010, “
X-Ray Reconstruction of Moving Morphology (XROMM): Precision, Accuracy and Applications in Comparative Biomechanics Research
,”
J. Exp. Zool. A Ecol. Genet. Physiol.
,
313
(
5
), pp.
262
279
.
11.
Anderst
,
W. J.
,
Vaidya
,
R.
, and
Tashman
,
S.
, 2008, “
A Technique to Measure Three-Dimensional In Vivo Rotation of Fused and Adjacent Lumbar Vertebrae
,”
Spine J.
,
8
(
6
), pp.
991
997
.
12.
Gatesy
,
S. M.
,
Baier
,
D. B.
,
Jenkins
,
F. A.
, and
Dial
,
K. P.
, 2010, “
Scientific Rotoscoping: A Morphology-Based Method of 3-D Motion Analysis and Visualization
,”
J. Exp. Zool. A Ecol. Genet. Physiol.
,
313
(
5
), pp.
244
261
.
13.
You
,
B. M.
,
Siy
,
P.
,
Anderst
,
W.
, and
Tashman
,
S.
, 2001, “
In Vivo Measurement of 3-D Skeletal Kinematics From Sequences of Biplane Radiographs: Application to Knee Kinematics
,”
IEEE Trans. Med. Imaging
,
20
(
6
), pp.
514
525
.
14.
Li
,
G.
,
Van de Velde
,
S. K.
, and
Bingham
,
J. T.
, 2008, “
Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech.
,
41
(
7
), pp.
1616
1622
.
15.
Bey
,
M. J.
,
Zauel
,
R.
,
Brock
,
S. K.
, and
Tashman
,
S.
, 2006, “
Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, In Vivo Glenohumeral Joint Kinematics
,”
J. Biomech. Eng.
,
128
(
4
), pp.
604
609
.
16.
Bey
,
M. J.
,
Kline
,
S. K.
,
Tashman
,
S.
, and
Zauel
,
R.
, 2008, “
Accuracy of Biplane X-Ray Imaging Combined With Model-Based Tracking for Measuring In-Vivo Patellofemoral Joint Motion
,”
J. Orthop. Surg. Res.
,
3
, p.
38
.
17.
Anderst
,
W.
,
Zauel
,
R.
,
Bishop
,
J.
,
Demps
,
E.
, and
Tashman
,
S.
, 2009, “
Validation of Three-Dimensional Model-Based Tibio-Femoral Tracking During Running
,”
Med. Eng. Phys.
,
31
(
1
), pp.
10
16
.
18.
Torry
,
M. R.
,
Shelburne
,
K. B.
,
Peterson
,
D. S.
,
Giphart
,
J. E.
,
Krong
,
J. P.
,
Myers
,
C.
,
Steadman
,
J. R.
, and
Woo
,
S. L. -Y. L.-Y.
, 2011, “
Knee Kinematic Profiles During Drop Landings: A Biplane Fluoroscopy Study
,”
Med. Sci. Sports Exercise
,
43
(
3
), pp.
533
541
.
19.
Babenko
,
P.
, and
Shah
,
M.
, 2008, “
MinGPU: A Minimum GPU Library for Computer Vision
,”
J Real-Time Image Proc.
,
3
(
4
), pp.
255
268
.
20.
Chen
,
L.
,
Armstrong
,
C. W.
, and
Raftopoulos
,
D. D.
, 1994, “
An Investigation on the Accuracy of Three-Dimensional Space Reconstruction Using the Direct Linear Transformation Technique
,”
J. Biomech.
,
27
(
4
), pp.
493
500
.
21.
Tashman
,
S.
,
Anderst
,
W.
,
Kolowich
,
P.
,
Havstad
,
S.
, and
Arnoczky
,
S.
, 2004, “
Kinematics of the ACL-Deficient Canine Knee During Gait: Serial Changes Over Two Years
,”
J. Orthop. Res.
,
22
(
5
), pp.
931
941
.
22.
Tashman
,
S.
,
Collon
,
D.
,
Anderson
,
K.
,
Kolowich
,
P.
, and
Anderst
,
W.
, 2004, “
Abnormal Rotational Knee Motion During Running After Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
32
(
4
), pp.
975
983
.
23.
Hedrick
,
T. L.
, 2008, “
Software Techniques for Two- And Three-Dimensional Kinematic Measurements of Biological and Biomimetic Systems
,”
Bioinspir. Biomim.
,
3
(
3
), p.
034001
.
24.
Marsalek
,
L.
,
Hauber
,
A.
, and
Slusallek
P.
, 2008, “
High-Speed Volume Ray Casting With CUDA
,”
Proceedings of the IEEE Symposium on Interactive Ray Tracing
.
26.
Kaufan
,
A.
, 1991,
Volume Visualization
,
IEEE Computer Society Press
,
Los Alamitos, CA
.
27.
Russ
,
J.
, 2007,
The Image Processing Handbook
,
CRC/Taylor and Francis
,
Boca Raton, FL
.
28.
Sonka
,
M.
, 1999,
Image Processing, Analysis, and Machine Vision
,
PWS Pub.
,
Pacific Grove, CA
.
29.
Nelder
,
J. A.
, and
Mead
,
R.
, 1965, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.
30.
Miranda
,
D. L.
,
Rainbow
,
M. J.
,
Leventhal
,
E. L.
,
Crisco
,
J. J.
, and
Fleming
,
B. C.
, 2010, “
Automatic Determination of Anatomical Coordinate Systems for Three-Dimensional Bone Models of the Isolated Human Knee
,”
J. Biomech.
,
43
(
8
), pp.
1623
1626
.
31.
Crisco
,
J. J.
,
Coburn
,
J. C.
,
Moore
,
D. C.
,
Akelman
,
E.
,
Weiss
,
A. -P. C. C.
, and
Wolfe
,
S. W.
, 2005, “
In Vivo Radiocarpal Kinematics and the Dart Thrower’s Motion
,”
J. Bone Jt. Surg., Am.
,
87
(
12
), pp.
2729
2740
.
32.
Tashman
,
S.
, 2008, “
Comments on ‘Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion’
,”
J. Biomech.
,
41
(
15
), pp.
3290
3293
.
33.
Hurschler
,
C.
,
Seehaus
,
F.
,
Emmerich
,
J.
,
Kaptein
,
B. L.
, and
Windhagen
,
H.
, 2008, “
Accuracy of Model-Based RSA Contour Reduction in a Typical Clinical Application
,”
Clin. Orthop. Relat. Res.
,
466
(
8
), pp.
1978
1986
.
34.
Seehaus
,
F.
,
Emmerich
,
J.
,
Kaptein
,
B. L.
,
Windhagen
,
H.
, and
Hurschler
,
C.
, 2009, “
Experimental Analysis of Model-Based Roentgen Stereophotogrammetric Analysis (MBRSA) on Four Typical Prosthesis Components
,”
J. Biomech. Eng.
,
131
(
4
), p.
041004
.
35.
Ford
,
K. R.
,
Myer
,
G. D.
,
Toms
,
H. E.
, and
Hewett
,
T. E.
, 2005, “
Gender Differences in the Kinematics of Unanticipated Cutting in Young Athletes
,”
Med. Sci. Sports Exercise
,
37
(
1
), pp.
124
129
.
36.
Ford
,
K. R.
,
Myer
,
G. D.
,
Smith
,
R. L.
,
Vianello
,
R. M.
,
Seiwert
,
S. L.
, and
Hewett
,
T. E.
, 2006, “
A Comparison of Dynamic Coronal Plane Excursion Between Matched Male and Female Athletes When Performing Single Leg Landings
,”
Clin. Biomech. (Bristol, Avon)
,
21
(
1
), pp.
33
40
.
37.
Taylor
,
K. A.
,
Terry
,
M. E.
,
Utturkar
,
G. M.
,
Spritzer
,
C. E.
,
Queen
,
R. M.
,
Irribarra
,
L. A.
,
Garrett
,
W. E.
, and
DeFrate
,
L. E.
, 2011, “
Measurement of In Vivo Anterior Cruciate Ligament Strain During Dynamic Jump Landing
,”
J. Biomech.
,
44
(
3
), pp.
365
371
.
38.
Hewett
,
T. E.
,
Myer
,
G. D.
,
Ford
,
K. R.
,
Heidt
,
R. S.
,
Colosimo
,
A. J.
,
McLean
,
S. G.
,
van den Bogert
,
A. J.
,
Paterno
,
M. V.
, and
Succop
,
P.
, 2005, “
Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study
,”
Am. J. Sports Med.
,
33
(
4
), pp.
492
501
.
39.
Leventhal
,
E. L.
,
Moore
,
D. C.
,
Akelman
,
E.
,
Wolfe
,
S. W.
, and
Crisco
,
J. J.
, 2010, “
Carpal and Forearm Kinematics During a Simulated Hammering Task
,”
J. Hand Surg. [Am]
,
35
(
7
), pp.
1097
1104
.
40.
Côté
,
J. N.
,
Raymond
,
D.
,
Mathieu
,
P. A.
,
Feldman
,
A. G.
, and
Levin
,
M. F.
, 2005, “
Differences in Multi-Joint Kinematic Patterns of Repetitive Hammering in Healthy, Fatigued and Shoulder-Injured Individuals
,”
Clin. Biomech. (Bristol, Avon)
,
20
(
6
), pp.
581
590
.
You do not currently have access to this content.